DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: BEYONDPLANCK II. CMB mapmaking through Gibbs sampling

Abstract

We present a Gibbs sampling solution to the mapmaking problem for cosmic microwave background (CMB) measurements that builds on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps: noise filtering and map binning. Considered as two separate steps, both are computationally much cheaper than solving the combined problem. This provides a huge performance benefit as compared to traditional methods and it allows us, for the first time, to bring the destriping baseline length to a single sample. Here, we applied the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in the time-ordered data are handled efficiently by filling them in with simulated noise as part of the Gibbs process. The Gibbs procedure yields a chain of map samples, from which we are able to compute the posterior mean as a best-estimate map. The variation in the chain provides information on the correlated residual noise, without the need to construct a full noise covariance matrix. However, if only a single maximum-likelihood frequency map estimate is required, we find that traditional conjugate gradient solvers converge much faster than a Gibbs sampler in terms of the total number of iterations. The conceptual advantagesmore » of the Gibbs sampling approach lies in statistically well-defined error propagation and systematic error correction. This methodology thus forms the conceptual basis for the mapmaking algorithm employed in the BEYONDPLANCK framework, which implements the first end-to-end Bayesian analysis pipeline for CMB observations.« less

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [2];  [2];  [3];  [4];  [2];  [5];  [6];  [2];  [2];  [2];  [7];  [2];  [4];  [2];  [5];  [2] more »;  [8];  [2];  [5];  [5];  [2];  [9];  [2];  [10];  [4];  [3];  [4];  [3];  [7];  [11];  [12];  [2];  [2];  [13];  [2];  [2];  [2];  [4] « less
  1. University of Helsinki (Finland)
  2. University of Oslo (Norway)
  3. Università degli Studi di Milano (Italy); Istituto Nazionale di Astrofisica (INAF)/Istituto di Astrofisica Spaziale e Fisica (IASF), Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy)
  4. Istituto Nazionale di Astrofisica (INAF), Trieste (Italy)
  5. Planetek Hellas, Marousi (Greece)
  6. Università degli Studi di Milano (Italy)
  7. Università degli Studi di Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy)
  8. Princeton University, NJ (United States)
  9. California Institute of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Laboratory (JPL)
  10. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Computational Cosmology Center
  11. Haverford College Astronomy Department, PA (United States)
  12. Max-Planck-Institut für Astrophysik, Garching (Germany)
  13. Istituto Nazionale di Astrofisica (INAF), Trieste (Italy); Università degli Studi di Trieste (Italy)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); Academy of Finland; Research Council of Norway (RCN)
OSTI Identifier:
2234090
Grant/Contract Number:  
AC02-05CH11231; 295113; 263011; 274990
Resource Type:
Accepted Manuscript
Journal Name:
Astronomy and Astrophysics
Additional Journal Information:
Journal Volume: 675; Journal ID: ISSN 0004-6361
Publisher:
EDP Sciences
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 79 ASTRONOMY AND ASTROPHYSICS; cosmic background radiation; methods: numerical; methods: data analysis

Citation Formats

Keihänen, Elina, Suur-Uski, A. -S., Andersen, K. J., Aurlien, R., Banerji, R., Basyrov, A., Bersanelli, M., Bertocco, S., Brilenkov, M., Carbone, M., Colombo, L. P. L., Eriksen, H. K., Eskilt, J. R., Foss, M. K., Franceschet, C., Fuskeland, U., Galeotta, S., Galloway, M., Gerakakis, S., Gjerløw, E., Hensley, B., Herman, D., Iacobellis, M., Ieronymaki, M., Ihle, H. T., Jewell, J. B., Karakci, A., Keskitalo, R., Maggio, G., Maino, D., Maris, M., Mennella, A., Paradiso, S., Partridge, B., Reinecke, M., San, M., Svalheim, T. L., Tavagnacco, D., Thommesen, H., Watts, D. J., Wehus, I. K., and Zacchei, A. BEYONDPLANCK II. CMB mapmaking through Gibbs sampling. United States: N. p., 2023. Web. doi:10.1051/0004-6361/202142799.
Keihänen, Elina, Suur-Uski, A. -S., Andersen, K. J., Aurlien, R., Banerji, R., Basyrov, A., Bersanelli, M., Bertocco, S., Brilenkov, M., Carbone, M., Colombo, L. P. L., Eriksen, H. K., Eskilt, J. R., Foss, M. K., Franceschet, C., Fuskeland, U., Galeotta, S., Galloway, M., Gerakakis, S., Gjerløw, E., Hensley, B., Herman, D., Iacobellis, M., Ieronymaki, M., Ihle, H. T., Jewell, J. B., Karakci, A., Keskitalo, R., Maggio, G., Maino, D., Maris, M., Mennella, A., Paradiso, S., Partridge, B., Reinecke, M., San, M., Svalheim, T. L., Tavagnacco, D., Thommesen, H., Watts, D. J., Wehus, I. K., & Zacchei, A. BEYONDPLANCK II. CMB mapmaking through Gibbs sampling. United States. https://doi.org/10.1051/0004-6361/202142799
Keihänen, Elina, Suur-Uski, A. -S., Andersen, K. J., Aurlien, R., Banerji, R., Basyrov, A., Bersanelli, M., Bertocco, S., Brilenkov, M., Carbone, M., Colombo, L. P. L., Eriksen, H. K., Eskilt, J. R., Foss, M. K., Franceschet, C., Fuskeland, U., Galeotta, S., Galloway, M., Gerakakis, S., Gjerløw, E., Hensley, B., Herman, D., Iacobellis, M., Ieronymaki, M., Ihle, H. T., Jewell, J. B., Karakci, A., Keskitalo, R., Maggio, G., Maino, D., Maris, M., Mennella, A., Paradiso, S., Partridge, B., Reinecke, M., San, M., Svalheim, T. L., Tavagnacco, D., Thommesen, H., Watts, D. J., Wehus, I. K., and Zacchei, A. Wed . "BEYONDPLANCK II. CMB mapmaking through Gibbs sampling". United States. https://doi.org/10.1051/0004-6361/202142799. https://www.osti.gov/servlets/purl/2234090.
@article{osti_2234090,
title = {BEYONDPLANCK II. CMB mapmaking through Gibbs sampling},
author = {Keihänen, Elina and Suur-Uski, A. -S. and Andersen, K. J. and Aurlien, R. and Banerji, R. and Basyrov, A. and Bersanelli, M. and Bertocco, S. and Brilenkov, M. and Carbone, M. and Colombo, L. P. L. and Eriksen, H. K. and Eskilt, J. R. and Foss, M. K. and Franceschet, C. and Fuskeland, U. and Galeotta, S. and Galloway, M. and Gerakakis, S. and Gjerløw, E. and Hensley, B. and Herman, D. and Iacobellis, M. and Ieronymaki, M. and Ihle, H. T. and Jewell, J. B. and Karakci, A. and Keskitalo, R. and Maggio, G. and Maino, D. and Maris, M. and Mennella, A. and Paradiso, S. and Partridge, B. and Reinecke, M. and San, M. and Svalheim, T. L. and Tavagnacco, D. and Thommesen, H. and Watts, D. J. and Wehus, I. K. and Zacchei, A.},
abstractNote = {We present a Gibbs sampling solution to the mapmaking problem for cosmic microwave background (CMB) measurements that builds on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps: noise filtering and map binning. Considered as two separate steps, both are computationally much cheaper than solving the combined problem. This provides a huge performance benefit as compared to traditional methods and it allows us, for the first time, to bring the destriping baseline length to a single sample. Here, we applied the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in the time-ordered data are handled efficiently by filling them in with simulated noise as part of the Gibbs process. The Gibbs procedure yields a chain of map samples, from which we are able to compute the posterior mean as a best-estimate map. The variation in the chain provides information on the correlated residual noise, without the need to construct a full noise covariance matrix. However, if only a single maximum-likelihood frequency map estimate is required, we find that traditional conjugate gradient solvers converge much faster than a Gibbs sampler in terms of the total number of iterations. The conceptual advantages of the Gibbs sampling approach lies in statistically well-defined error propagation and systematic error correction. This methodology thus forms the conceptual basis for the mapmaking algorithm employed in the BEYONDPLANCK framework, which implements the first end-to-end Bayesian analysis pipeline for CMB observations.},
doi = {10.1051/0004-6361/202142799},
journal = {Astronomy and Astrophysics},
number = ,
volume = 675,
place = {United States},
year = {Wed Jun 28 00:00:00 EDT 2023},
month = {Wed Jun 28 00:00:00 EDT 2023}
}

Works referenced in this record:

Planck 2015 results : IV. Low Frequency Instrument beams and window functions
journal, September 2016


Planck 2013 results. II. Low Frequency Instrument data processing
journal, October 2014


A maximum likelihood approach to the destriping technique
journal, November 2004


Algorithm for the Evaluation of Reduced Wigner Matrices
journal, September 2010


Planck 2018 results: V. CMB power spectra and likelihoods
journal, September 2020


Comparison of map-making algorithms for CMB experiments
journal, March 2006


Beyondplanck
journal, June 2023


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

A simulation pipeline for the Planck mission
journal, December 2005


Bayesian Noise Estimation for Non-Ideal Cosmic Microwave Background Experiments
journal, February 2012

  • Wehus, I. K.; Næss, S. K.; Eriksen, H. K.
  • The Astrophysical Journal Supplement Series, Vol. 199, Issue 1
  • DOI: 10.1088/0067-0049/199/1/15

Destriping CMB temperature and polarization maps
journal, August 2009


Map making in small field modulated CMB polarization experiments: approximating the maximum likelihood method
journal, March 2009


Beyondplanck
journal, June 2023


Making sky maps from Planck data
journal, February 2007


Planck 2018 results: IV. Diffuse component separation
journal, September 2020


Planck 2015 results : II. Low Frequency Instrument data processings
journal, September 2016


Making cosmic microwave background temperature and polarization maps with MADAM
journal, February 2010


Beyondplanck
journal, June 2023


The Planck-LFI instrument: Analysis of the $1/f$ noise and implications for the scanning strategy
journal, December 1999

  • Maino, D.; Burigana, C.; Maltoni, M.
  • Astronomy and Astrophysics Supplement Series, Vol. 140, Issue 3
  • DOI: 10.1051/aas:1999429

Analysis of the accuracy of a destriping method for future cosmic microwave background mapping with the PLANCK SURVEYOR satellite
journal, February 1998

  • Delabrouille, J.
  • Astronomy and Astrophysics Supplement Series, Vol. 127, Issue 3
  • DOI: 10.1051/aas:1998119

Joint Bayesian Component Separation and CMB Power Spectrum Estimation
journal, March 2008

  • Eriksen, H. K.; Jewell, J. B.; Dickinson, C.
  • The Astrophysical Journal, Vol. 676, Issue 1
  • DOI: 10.1086/525277

Making maps from Planck LFI 30 GHz data with asymmetric beams and cooler noise
journal, November 2008


Removing $1/f$ noise stripes in cosmic microwave background anisotropy observations
journal, May 2002


ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements
journal, November 2012


Planck pre-launch status: Design and description of the Low Frequency Instrument
journal, September 2010


Beyondplanck
journal, June 2023


Making maps from Planck LFI 30 GHz data
journal, June 2007


Madam- a map-making method for CMB experiments
journal, June 2005