DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Fri Oct 25 00:00:00 EDT 2024

Title: Facile Strategy to Prepare Poly(ionic liquid)-Coated Solid Polymer Electrolytes through Layer-by-Layer Assembly

Abstract

The inability of solid polymer electrolytes to preserve strong mechanical strength with high ionic conductivity hinders the commercialization of lithium metal batteries (LMBs). The success of fabricating layer-by-layer (LbL)-assembled electrolytes has realized the application of flexible solid polymer electrolytes in electrochemical devices. Here, we demonstrate a rational strategy to construct solid electrolytes coated with multiple ultrathin layers of polyanions (poly(sodium 4-styrenesulfonate)) and polycations (linear poly(1-butyl-3-(4-vinylbenzyl)-1H-imidazolium chloride) (BVIC)/linear poly(PEG4-VIC)/SiO2-g-poly(PEG4-VIC)) using an LbL assembly method. Poly(ionic liquid) backbones and PEG side groups are employed to facilitate the transport of lithium ions via the segmental motion of the macromolecular matrix. The fabricated free-standing membranes exhibited good ionic conductivities of 9.03–10 × 10–4 S cm–1. Furthermore, a Li/LiFePO4 cell assembled with the LbL-membrane electrolytes exhibits an initial high discharge capacity of 143–158 mAhg–1 at 60 °C with high columbic efficiency. In conclusion, this approach, which combines polymer synthesis and LbL self-assembly, is an effective and facile route to fabricate solid polymer electrolyte membranes with superior ionic conductivity and mechanical robustness, which are useful for electrochemical devices and high-voltage battery applications.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1];  [2];  [2]; ORCiD logo [1]; ORCiD logo [3]
  1. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  3. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); USDOE Office of Fossil Energy and Carbon Management (FECM)
OSTI Identifier:
2217709
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 15; Journal Issue: 44; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; carbon nanosphere; particle brush; poly(ionic liquid)s; atom transfer radical; polymerization; lithium metal batteries

Citation Formats

Wang, Zongyu, Thapaliya, Bishnu P., Popovs, Ilja, Wang, Yangyang, Wang, Tao, Chen, Jihua, Arnould, Mark A., Mahurin, Shannon M., and Dai, Sheng. Facile Strategy to Prepare Poly(ionic liquid)-Coated Solid Polymer Electrolytes through Layer-by-Layer Assembly. United States: N. p., 2023. Web. doi:10.1021/acsami.3c11418.
Wang, Zongyu, Thapaliya, Bishnu P., Popovs, Ilja, Wang, Yangyang, Wang, Tao, Chen, Jihua, Arnould, Mark A., Mahurin, Shannon M., & Dai, Sheng. Facile Strategy to Prepare Poly(ionic liquid)-Coated Solid Polymer Electrolytes through Layer-by-Layer Assembly. United States. https://doi.org/10.1021/acsami.3c11418
Wang, Zongyu, Thapaliya, Bishnu P., Popovs, Ilja, Wang, Yangyang, Wang, Tao, Chen, Jihua, Arnould, Mark A., Mahurin, Shannon M., and Dai, Sheng. Wed . "Facile Strategy to Prepare Poly(ionic liquid)-Coated Solid Polymer Electrolytes through Layer-by-Layer Assembly". United States. https://doi.org/10.1021/acsami.3c11418.
@article{osti_2217709,
title = {Facile Strategy to Prepare Poly(ionic liquid)-Coated Solid Polymer Electrolytes through Layer-by-Layer Assembly},
author = {Wang, Zongyu and Thapaliya, Bishnu P. and Popovs, Ilja and Wang, Yangyang and Wang, Tao and Chen, Jihua and Arnould, Mark A. and Mahurin, Shannon M. and Dai, Sheng},
abstractNote = {The inability of solid polymer electrolytes to preserve strong mechanical strength with high ionic conductivity hinders the commercialization of lithium metal batteries (LMBs). The success of fabricating layer-by-layer (LbL)-assembled electrolytes has realized the application of flexible solid polymer electrolytes in electrochemical devices. Here, we demonstrate a rational strategy to construct solid electrolytes coated with multiple ultrathin layers of polyanions (poly(sodium 4-styrenesulfonate)) and polycations (linear poly(1-butyl-3-(4-vinylbenzyl)-1H-imidazolium chloride) (BVIC)/linear poly(PEG4-VIC)/SiO2-g-poly(PEG4-VIC)) using an LbL assembly method. Poly(ionic liquid) backbones and PEG side groups are employed to facilitate the transport of lithium ions via the segmental motion of the macromolecular matrix. The fabricated free-standing membranes exhibited good ionic conductivities of 9.03–10 × 10–4 S cm–1. Furthermore, a Li/LiFePO4 cell assembled with the LbL-membrane electrolytes exhibits an initial high discharge capacity of 143–158 mAhg–1 at 60 °C with high columbic efficiency. In conclusion, this approach, which combines polymer synthesis and LbL self-assembly, is an effective and facile route to fabricate solid polymer electrolyte membranes with superior ionic conductivity and mechanical robustness, which are useful for electrochemical devices and high-voltage battery applications.},
doi = {10.1021/acsami.3c11418},
journal = {ACS Applied Materials and Interfaces},
number = 44,
volume = 15,
place = {United States},
year = {Wed Oct 25 00:00:00 EDT 2023},
month = {Wed Oct 25 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 25, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

High-Contrast Electrochromism from Layer-By-Layer Polymer Films
journal, April 2003

  • DeLongchamp, Dean M.; Kastantin, Mark; Hammond, Paula T.
  • Chemistry of Materials, Vol. 15, Issue 8
  • DOI: 10.1021/cm021045x

Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
journal, April 2015


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Release of a Dye from Hydrogen-Bonded and Electrostatically Assembled Polymer Films Triggered by Adsorption of a Polyelectrolyte
journal, September 2004

  • Kharlampieva, Eugenia; Sukhishvili, Svetlana A.
  • Langmuir, Vol. 20, Issue 22
  • DOI: 10.1021/la048763d

Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

Optimisation of some parameters for the preparation of nanostructured LifePO4/C cathode
journal, August 2008


Fast Ion Conduction in Layer-By-Layer Polymer Films
journal, March 2003

  • DeLongchamp, Dean M.; Hammond, Paula T.
  • Chemistry of Materials, Vol. 15, Issue 5
  • DOI: 10.1021/cm020945a

Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO 2 Permeability and Mechanical Performance
journal, June 2021

  • Wang, Zongyu; Chen, Hao; Wang, Yangyang
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 23
  • DOI: 10.1021/acsami.1c04342

Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity
journal, December 2019

  • Thapaliya, Bishnu P.; Popov, Ivan; Dai, Sheng
  • ACS Applied Energy Materials, Vol. 3, Issue 2
  • DOI: 10.1021/acsaem.9b01932

Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials
journal, January 2005


A Simple and Universal Gel Permeation Chromatography Technique for Precise Molecular Weight Characterization of Well-Defined Poly(ionic liquid)s
journal, March 2013

  • He, Hongkun; Zhong, Mingjiang; Adzima, Brian
  • Journal of the American Chemical Society, Vol. 135, Issue 11
  • DOI: 10.1021/ja4012645

Thin-film nanocomposite devices for renewable energy current status and challenges
journal, December 2020


New Class of Ultrathin, Highly Cell-Adhesion-Resistant Polyelectrolyte Multilayers with Micropatterning Capabilities
journal, May 2003

  • Yang, Sung Yun; Mendelsohn, Jonas D.; Rubner, Michael F.
  • Biomacromolecules, Vol. 4, Issue 4
  • DOI: 10.1021/bm034035d

A solid future for battery development
journal, September 2016


Highly Ion Conductive Poly(ethylene oxide)-Based Solid Polymer Electrolytes from Hydrogen Bonding Layer-by-Layer Assembly
journal, June 2004

  • DeLongchamp, Dean M.; Hammond, Paula T.
  • Langmuir, Vol. 20, Issue 13
  • DOI: 10.1021/la049777m

Transparent Solid Polymer Electrolyte Thin Film Via Layer-By-Layer Deposition for Electrochromic Devices
journal, April 2015


Form and Function in Multilayer Assembly: New Applications at the Nanoscale
journal, August 2004


New battery strategies with a polymer/Al2O3 separator
journal, October 2014


Layer-by-layer assembly for rapid fabrication of thick polymeric films
journal, January 2012

  • Li, Yang; Wang, Xu; Sun, Junqi
  • Chemical Society Reviews, Vol. 41, Issue 18
  • DOI: 10.1039/c2cs35107b

Synthesis and Characterization of Macrocyclic Ionic Liquids for CO 2 Separation
journal, May 2021

  • Thapaliya, Bishnu Prasad; Puskar, Nicolette G.; Slaymaker, Samantha
  • Industrial & Engineering Chemistry Research, Vol. 60, Issue 22
  • DOI: 10.1021/acs.iecr.1c00673

Polyelectrolyte multilayered assemblies in biomedical technologies
journal, January 2014

  • Costa, Rui R.; Mano, João F.
  • Chemical Society Reviews, Vol. 43, Issue 10
  • DOI: 10.1039/c3cs60393h

Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes
journal, August 2007

  • Bara, Jason E.; Lessmann, Sonja; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 16
  • DOI: 10.1021/ie0704492

Enhanced Electrochromism with Rapid Growth Layer‐by‐Layer Assembly of Polyelectrolyte Complexes
journal, December 2014

  • Cui, Mengqi; Ng, Wee Siang; Wang, Xu
  • Advanced Functional Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adfm.201402100

Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries
journal, January 2019

  • Yu, Shicheng; Schmohl, Sebastian; Liu, Zigeng
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/C8TA11259B

A Solid Lithium Electrolyte via Addition of Lithium Isopropoxide to a Metal–Organic Framework with Open Metal Sites
journal, September 2011

  • Wiers, Brian M.; Foo, Maw-Lin; Balsara, Nitash P.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205827z

Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic
journal, January 2016

  • Fu, Jingcheng; Schlenoff, Joseph B.
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b11878

Encapsulation of Enzymes in Layer-by-Layer (LbL) Structures: Latest Advances and Applications
journal, June 2013

  • Sakr, Omar. S.; Borchard, Gerrit
  • Biomacromolecules, Vol. 14, Issue 7
  • DOI: 10.1021/bm400198p

Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst
journal, September 2014

  • He, Hongkun; Luebke, David; Nulwala, Hunaid
  • Macromolecules, Vol. 47, Issue 19
  • DOI: 10.1021/ma501487u

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Layer-by-Layer Assembled Solid Polymer Electrolyte for Electrochromic Devices
journal, March 2011

  • Nguyen, Chien A.; Argun, Avni A.; Hammond, Paula T.
  • Chemistry of Materials, Vol. 23, Issue 8
  • DOI: 10.1021/cm103572q

Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application
journal, January 2007

  • Ariga, Katsuhiko; Hill, Jonathan P.; Ji, Qingmin
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 19
  • DOI: 10.1039/b700410a

Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: Synthesis and Applications
journal, May 2015


Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future
journal, April 2015


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

pH-Controlled Permeability of Layered Hydrogen-Bonded Polymer Capsules
journal, July 2006

  • Kozlovskaya, Veronika; Sukhishvili, Svetlana A.
  • Macromolecules, Vol. 39, Issue 16
  • DOI: 10.1021/ma0607923

Water uptake behavior of hydrogen-bonded PVPON–PAA LBL film
journal, January 2006

  • Yang, Shuguang; Zhang, Yongjun; Guan, Ying
  • Soft Matter, Vol. 2, Issue 8
  • DOI: 10.1039/B606923A

Combined Ionic and Hydrogen Bonding in Polymer Multilayer Thin Film for High Gas Barrier and Stretchiness
journal, August 2015


Highly Conductive, Methanol Resistant Polyelectrolyte Multilayers
journal, April 2008

  • Argun, Avni A.; Ashcraft, J. Nathan; Hammond, Paula T.
  • Advanced Materials, Vol. 20, Issue 8
  • DOI: 10.1002/adma.200703205

Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries
journal, February 2017

  • Gaikwad, Abhinav M.; Arias, Ana Claudia
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 7
  • DOI: 10.1021/acsami.6b14719

Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers
journal, August 2014

  • Borges, João; Mano, João F.
  • Chemical Reviews, Vol. 114, Issue 18
  • DOI: 10.1021/cr400531v

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362