DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dark matter halo mass functions and density profiles from mass and energy cascade

Abstract

Abstract Halo abundance and structure play a central role for modeling structure formation and evolution. Without relying on a spherical or ellipsoidal collapse model, we analytically derive the halo mass function and cuspy halo density (inner slope of −4/3) based on the mass and energy cascade theory in dark matter flow. The hierarchical halo structure formation leads to halo or particle random walk with a position-dependent waiting time $$$$\tau _g$$$$ τ g . First, the inverse mass cascade from small to large scales leads to the halo random walk in mass space with $$$$\tau _g\propto m_h^{-\lambda }$$$$ τ g m h - λ , where $$$$m_h$$$$ m h is the halo mass and $$$$\lambda$$$$ λ is a halo geometry parameter with predicted value of 2/3. The corresponding Fokker-Planck solution for halo random walk in mass space gives rise to the halo mass function with a power-law behavior on small scale and exponential decay on large scale. This can be further improved by considering two different $$$$\lambda$$$$ λ for haloes below and above a critical mass scale $$$$m_h^*$$$$ m h , i.e. a double- $$$$\lambda$$$$ λ halo mass function. Second, a double- $$$$\gamma$$$$ γ density profile can be derived based on the particle random walk in 3D space with a position-dependent waiting time $$$$\tau _g \propto \Phi (r)^{-1} \propto r^{-\gamma }$$$$ τ g Φ ( r ) - 1 r - γ , where $$$$\Phi$$$$ Φ is the gravitational potential and r is the particle distance to halo center. Theory predicts $$$$\gamma =2/3$$$$ γ = 2 / 3 that leads to a cuspy density profile with an inner slope of −4/3, consistent with the predicted scaling laws from energy cascade. The Press-Schechter mass function and Einasto density profile are just special cases of proposed models. The small scale permanence can be identified due to the scale-independent rate of mass and energy cascade, where density profiles of different halo masses and redshifts converge to the $$-4/3$$ - 4 / 3 scaling law ( $$$$\rho _h \propto r^{-4/3}$$$$ ρ h r - 4 / 3 ) on small scales. Theory predicts the halo number density scales with halo mass as $$$$\propto m_h^{-1.9}$$$$ m h - 1.9 , while the halo mass density scales as $$$$\propto m_h^{4/9}$$$$ m h 4 / 9 . Results were compared against the Illustris simulations. This new perspective provides a theory for nearly universal halo mass functions and density profiles.

Authors:
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
2007234
Alternate Identifier(s):
OSTI ID: 2280609
Report Number(s):
PNNL-SA-187963
Journal ID: ISSN 2045-2322; 16531; PII: 42958
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 13 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; astronomy and astrophysics; dark energy and dark matter

Citation Formats

Xu, Zhijie. Dark matter halo mass functions and density profiles from mass and energy cascade. United Kingdom: N. p., 2023. Web. doi:10.1038/s41598-023-42958-6.
Xu, Zhijie. Dark matter halo mass functions and density profiles from mass and energy cascade. United Kingdom. https://doi.org/10.1038/s41598-023-42958-6
Xu, Zhijie. Mon . "Dark matter halo mass functions and density profiles from mass and energy cascade". United Kingdom. https://doi.org/10.1038/s41598-023-42958-6.
@article{osti_2007234,
title = {Dark matter halo mass functions and density profiles from mass and energy cascade},
author = {Xu, Zhijie},
abstractNote = {Abstract Halo abundance and structure play a central role for modeling structure formation and evolution. Without relying on a spherical or ellipsoidal collapse model, we analytically derive the halo mass function and cuspy halo density (inner slope of −4/3) based on the mass and energy cascade theory in dark matter flow. The hierarchical halo structure formation leads to halo or particle random walk with a position-dependent waiting time $$\tau _g$$ τ g . First, the inverse mass cascade from small to large scales leads to the halo random walk in mass space with $$\tau _g\propto m_h^{-\lambda }$$ τ g ∝ m h - λ , where $$m_h$$ m h is the halo mass and $$\lambda$$ λ is a halo geometry parameter with predicted value of 2/3. The corresponding Fokker-Planck solution for halo random walk in mass space gives rise to the halo mass function with a power-law behavior on small scale and exponential decay on large scale. This can be further improved by considering two different $$\lambda$$ λ for haloes below and above a critical mass scale $$m_h^*$$ m h ∗ , i.e. a double- $$\lambda$$ λ halo mass function. Second, a double- $$\gamma$$ γ density profile can be derived based on the particle random walk in 3D space with a position-dependent waiting time $$\tau _g \propto \Phi (r)^{-1} \propto r^{-\gamma }$$ τ g ∝ Φ ( r ) - 1 ∝ r - γ , where $$\Phi$$ Φ is the gravitational potential and r is the particle distance to halo center. Theory predicts $$\gamma =2/3$$ γ = 2 / 3 that leads to a cuspy density profile with an inner slope of −4/3, consistent with the predicted scaling laws from energy cascade. The Press-Schechter mass function and Einasto density profile are just special cases of proposed models. The small scale permanence can be identified due to the scale-independent rate of mass and energy cascade, where density profiles of different halo masses and redshifts converge to the $$-4/3$$ - 4 / 3 scaling law ( $$\rho _h \propto r^{-4/3}$$ ρ h ∝ r - 4 / 3 ) on small scales. Theory predicts the halo number density scales with halo mass as $$\propto m_h^{-1.9}$$ ∝ m h - 1.9 , while the halo mass density scales as $$\propto m_h^{4/9}$$ ∝ m h 4 / 9 . Results were compared against the Illustris simulations. This new perspective provides a theory for nearly universal halo mass functions and density profiles.},
doi = {10.1038/s41598-023-42958-6},
journal = {Scientific Reports},
number = 1,
volume = 13,
place = {United Kingdom},
year = {Mon Oct 02 00:00:00 EDT 2023},
month = {Mon Oct 02 00:00:00 EDT 2023}
}

Works referenced in this record:

First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Determination of Cosmological Parameters
journal, September 2003

  • Spergel, D. N.; Verde, L.; Peiris, H. V.
  • The Astrophysical Journal Supplement Series, Vol. 148, Issue 1
  • DOI: 10.1086/377226

Maximum entropy distributions of dark matter in ΛCDM cosmology
journal, July 2023


A Universal Density Profile from Hierarchical Clustering
journal, December 1997

  • Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.
  • The Astrophysical Journal, Vol. 490, Issue 2
  • DOI: 10.1086/304888

An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier
journal, January 2002


Large-scale bias and the peak background split
journal, September 1999


A dark matter profile to model diverse feedback-induced core sizes of ΛCDM haloes
journal, July 2020

  • Lazar, Alexandres; Bullock, James S.; Boylan-Kolchin, Michael
  • Monthly Notices of the Royal Astronomical Society, Vol. 497, Issue 2
  • DOI: 10.1093/mnras/staa2101

The diversity and similarity of simulated cold dark matter haloes: Diversity and similarity of simulated CDM haloes
journal, December 2009


Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment
journal, June 2007


Quantifying the heart of darkness with GHALO - a multibillion particle simulation of a galactic halo
journal, September 2009


The mass function of dark matter haloes
journal, February 2001


Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality
journal, December 2008

  • Tinker, Jeremy; Kravtsov, Andrey V.; Klypin, Anatoly
  • The Astrophysical Journal, Vol. 688, Issue 2
  • DOI: 10.1086/591439

Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes
journal, May 2001


Where Are the Missing Galactic Satellites?
journal, September 1999

  • Klypin, Anatoly; Kravtsov, Andrey V.; Valenzuela, Octavio
  • The Astrophysical Journal, Vol. 522, Issue 1
  • DOI: 10.1086/307643

Formation of Gravitationally Bound Primordial Gas Clouds
journal, July 1969

  • Tomita, Kenji
  • Progress of Theoretical Physics, Vol. 42, Issue 1
  • DOI: 10.1143/Ptp.42.9

The illustris simulation: Public data release
journal, November 2015


Self-similar secondary infall and accretion in an Einstein-de Sitter universe
journal, May 1985

  • Bertschinger, E.
  • The Astrophysical Journal Supplement Series, Vol. 58
  • DOI: 10.1086/191028

Resolving the Structure of Cold Dark Matter Halos
journal, May 1998

  • Moore, B.; Governato, F.; Quinn, T.
  • The Astrophysical Journal, Vol. 499, Issue 1
  • DOI: 10.1086/311333

On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution
journal, August 1972

  • Gunn, James E.; Gott, J. Richard, III
  • The Astrophysical Journal, Vol. 176
  • DOI: 10.1086/151605

Evolution of the mass function of dark matter haloes: Evolution of the mass function
journal, November 2003


The inner structure of ΛCDM haloes - III. Universality and asymptotic slopes
journal, April 2004


Peaks theory and the excursion set approach: Excursion set peaks
journal, October 2012


The Core-Cusp Problem
journal, January 2010


Too big to fail? The puzzling darkness of massive Milky Way subhaloes: Massive dark subhaloes in the Milky Way
journal, June 2011

  • Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 415, Issue 1
  • DOI: 10.1111/j.1745-3933.2011.01074.x

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL INTERPRETATION
journal, January 2011

  • Komatsu, E.; Smith, K. M.; Dunkley, J.
  • The Astrophysical Journal Supplement Series, Vol. 192, Issue 2
  • DOI: 10.1088/0067-0049/192/2/18

Resolving the Structure of Cold Dark Matter Halos
journal, June 2001

  • Klypin, Anatoly; Kravtsov, Andrey V.; Bullock, James S.
  • The Astrophysical Journal, Vol. 554, Issue 2
  • DOI: 10.1086/321400

On the statistical theory of self-gravitating collisionless dark matter flow
journal, July 2023


Excursion set mass functions for hierarchical Gaussian fluctuations
journal, September 1991

  • Bond, J. R.; Cole, S.; Efstathiou, G.
  • The Astrophysical Journal, Vol. 379
  • DOI: 10.1086/170520

The Cosmological Mass Distribution Function in the Zeldovich Approximation
journal, June 1998

  • Lee, Jounghun; Shandarin, Sergei F.
  • The Astrophysical Journal, Vol. 500, Issue 1
  • DOI: 10.1086/305710

Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation
journal, February 1974

  • Press, William H.; Schechter, Paul
  • The Astrophysical Journal, Vol. 187
  • DOI: 10.1086/152650

Precision Determination of the Mass Function of Dark Matter Halos
journal, August 2006

  • Warren, Michael S.; Abazajian, Kevork; Holz, Daniel E.
  • The Astrophysical Journal, Vol. 646, Issue 2
  • DOI: 10.1086/504962

Halo models of large scale structure
journal, December 2002


Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows
journal, January 2010


Clumps and streams in the local dark matter distribution
journal, August 2008


Amplified J-factors in the Galactic Centre for velocity-dependent dark matter annihilation in FIRE simulations
journal, April 2022

  • McKeown, Daniel; Bullock, James S.; Mercado, Francisco J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 513, Issue 1
  • DOI: 10.1093/mnras/stac966

Simulations of the formation, evolution and clustering of galaxies and quasars
journal, June 2005

  • Springel, Volker; White, Simon D. M.; Jenkins, Adrian
  • Nature, Vol. 435, Issue 7042
  • DOI: 10.1038/nature03597

Tests of cosmological models constrained by inflation
journal, September 1984

  • Peebles, P. J. E.
  • The Astrophysical Journal, Vol. 284
  • DOI: 10.1086/162425

The Structure and Evolution of Cold Dark Matter Halos
journal, February 2011


A New Representation for Stochastic Integrals and Equations
journal, May 1966

  • Stratonovich, R. L.
  • SIAM Journal on Control, Vol. 4, Issue 2
  • DOI: 10.1137/0304028

Accurate Universal Models for the mass Accretion Histories and Concentrations of dark Matter Halos
journal, November 2009


The halo mass Function from Excursion set Theory. i. Gaussian Fluctuations with Non-Markovian Dependence on the Smoothing Scale
journal, February 2010


Small-Scale Challenges to the Λ CDM Paradigm
journal, August 2017


The Mira-Titan Universe. III. Emulation of the Halo Mass Function
journal, September 2020

  • Bocquet, Sebastian; Heitmann, Katrin; Habib, Salman
  • The Astrophysical Journal, Vol. 901, Issue 1
  • DOI: 10.3847/1538-4357/abac5c

The structure of cold dark matter halos
journal, September 1991

  • Dubinski, John; Carlberg, R. G.
  • The Astrophysical Journal, Vol. 378
  • DOI: 10.1086/170451

Dark matter and cosmic structure
journal, September 2012


A Theory of the Spatial Distribution of Galaxies.
journal, July 1952

  • Neyman, J.; Scott, E. L.
  • The Astrophysical Journal, Vol. 116
  • DOI: 10.1086/145599

The Cloud-in-Cloud Problem in the Press-Schechter Formalism of Hierarchical Structure Formation
journal, July 1995

  • Jedamzik, Karsten
  • The Astrophysical Journal, Vol. 448
  • DOI: 10.1086/175936

The Aquarius Project: the subhaloes of galactic haloes
journal, December 2008


Universal scaling laws and density slopes for dark matter haloes
journal, March 2023


The Halo Mass Function: High‐Redshift Evolution and Universality
journal, December 2007

  • Lukić, Zarija; Heitmann, Katrin; Habib, Salman
  • The Astrophysical Journal, Vol. 671, Issue 2
  • DOI: 10.1086/523083

Observational and theoretical constraints on singular dark matter halos
journal, May 1994

  • Flores, Ricardo A.; Primack, Joel R.
  • The Astrophysical Journal, Vol. 427
  • DOI: 10.1086/187350

Self-similar gravitational collapse in an expanding universe
journal, June 1984

  • Fillmore, J. A.; Goldreich, P.
  • The Astrophysical Journal, Vol. 281
  • DOI: 10.1086/162070

Excursion set halo mass function and bias in a stochastic barrier model of ellipsoidal collapse
journal, July 2011


Euclid preparation. XXIV. Calibration of the halo mass function in $Λ(ν)$CDM cosmologies
text, January 2022


One step beyond: the excursion set approach with correlated steps: Excursion set with correlated steps
journal, April 2012