DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sun Sep 01 00:00:00 EDT 2024

Title: Niobium substitution suppresses the superconducting critical temperature of pressurized MoB 2

Abstract

A recent study has demonstrated that MoB2, transforming to the same structure as MgB2 (P6/mmm), superconducts at temperatures above 30 K near 100 GPa [C. Pei et al., Natl. Sci. Rev. 10, nwad034 (2023)], and Nb substitution in MoB2 stabilizes the P6/mmm structure down to ambient pressure [A. C. Hire et al., Phys. Rev. B 106, 174515 (2022)]. Here, the current work explores the high-pressure superconducting behavior of Nb-substituted MoB2 (Nb0.25Mo0.75B2). High-pressure x-ray diffraction measurements show that the sample remains in the ambient pressure P6/mmm structure to at least 160 GPa. Electrical resistivity measurements demonstrate that from an ambient pressure Tc of 8K (confirmed by specific heat to be a bulk effect), the critical temperature is suppressed to 4 K at 50 GPa, before gradually rising to 5.5 K at 170 GPa. The critical temperature at high pressure is thus significantly lower than that found in MoB2 under pressure (30 K), revealing that Nb substitution results in a strong suppression of the superconducting critical temperature. Our calculations indeed find a reduced electron-phonon coupling in Nb0.25Mo0.75B2, but do not account fully for the observed suppression, which may also arise from inhomogeneity and enhanced spin fluctuations.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [3];  [2];  [1];  [1];  [1];  [1]
  1. Univ. of Florida, Gainesville, FL (United States)
  2. Univ. of Illinois, Chicago, IL (United States)
  3. Argonne National Laboratory (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
OSTI Identifier:
2007155
Grant/Contract Number:  
AC02-06CH11357; SC0020385; NA0003975; FG02-94ER14466
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 108; Journal Issue: 9; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; pressure effects; structural properties; superconductivity; alloys; density functional calculations; resistivity measurements; x-ray diffraction

Citation Formats

Lim, J., Sinha, S., Hire, A. C., Kim, J. S., Dee, P. M., Kumar, R. S., Popov, D., Hemley, R. J., Hennig, R. G., Hirschfeld, P. J., Stewart, G. R., and Hamlin, J. J. Niobium substitution suppresses the superconducting critical temperature of pressurized MoB2. United States: N. p., 2023. Web. doi:10.1103/physrevb.108.094501.
Lim, J., Sinha, S., Hire, A. C., Kim, J. S., Dee, P. M., Kumar, R. S., Popov, D., Hemley, R. J., Hennig, R. G., Hirschfeld, P. J., Stewart, G. R., & Hamlin, J. J. Niobium substitution suppresses the superconducting critical temperature of pressurized MoB2. United States. https://doi.org/10.1103/physrevb.108.094501
Lim, J., Sinha, S., Hire, A. C., Kim, J. S., Dee, P. M., Kumar, R. S., Popov, D., Hemley, R. J., Hennig, R. G., Hirschfeld, P. J., Stewart, G. R., and Hamlin, J. J. Fri . "Niobium substitution suppresses the superconducting critical temperature of pressurized MoB2". United States. https://doi.org/10.1103/physrevb.108.094501.
@article{osti_2007155,
title = {Niobium substitution suppresses the superconducting critical temperature of pressurized MoB2},
author = {Lim, J. and Sinha, S. and Hire, A. C. and Kim, J. S. and Dee, P. M. and Kumar, R. S. and Popov, D. and Hemley, R. J. and Hennig, R. G. and Hirschfeld, P. J. and Stewart, G. R. and Hamlin, J. J.},
abstractNote = {A recent study has demonstrated that MoB2, transforming to the same structure as MgB2 (P6/mmm), superconducts at temperatures above 30 K near 100 GPa [C. Pei et al., Natl. Sci. Rev. 10, nwad034 (2023)], and Nb substitution in MoB2 stabilizes the P6/mmm structure down to ambient pressure [A. C. Hire et al., Phys. Rev. B 106, 174515 (2022)]. Here, the current work explores the high-pressure superconducting behavior of Nb-substituted MoB2 (Nb0.25Mo0.75B2). High-pressure x-ray diffraction measurements show that the sample remains in the ambient pressure P6/mmm structure to at least 160 GPa. Electrical resistivity measurements demonstrate that from an ambient pressure Tc of 8K (confirmed by specific heat to be a bulk effect), the critical temperature is suppressed to 4 K at 50 GPa, before gradually rising to 5.5 K at 170 GPa. The critical temperature at high pressure is thus significantly lower than that found in MoB2 under pressure (30 K), revealing that Nb substitution results in a strong suppression of the superconducting critical temperature. Our calculations indeed find a reduced electron-phonon coupling in Nb0.25Mo0.75B2, but do not account fully for the observed suppression, which may also arise from inhomogeneity and enhanced spin fluctuations.},
doi = {10.1103/physrevb.108.094501},
journal = {Physical Review. B},
number = 9,
volume = 108,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2023},
month = {Fri Sep 01 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 1, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Equation of state of rhenium and application for ultra high pressure calibration
journal, January 2014

  • Anzellini, Simone; Dewaele, Agnès; Occelli, Florent
  • Journal of Applied Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.4863300

Spin fluctuation effects in nearly antiferromagnetic vanadium and chromium diborides
journal, January 1972


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Superconductivity at 39 K in magnesium diboride
journal, March 2001

  • Nagamatsu, Jun; Nakagawa, Norimasa; Muranaka, Takahiro
  • Nature, Vol. 410, Issue 6824
  • DOI: 10.1038/35065039

Stabilization and superconductivity of AlB2-type nonstoichiometric molybdenum diboride by Sc doping
journal, July 2022


Acoustic-mode-driven electron-phonon coupling in transition-metal diborides
journal, April 2003


Pressure dependence of the superconducting transition temperature in single-crystalNbBx(xnear 2) withTc=9.4 K
journal, May 1992


Effect of spin fluctuations on superconductivity in V and Nb: A first-principles study
journal, December 2020


Effect of metal vacancies on the band structure of Nb, Zr, and Y diborides
journal, September 2003

  • Shein, I. R.; Medvedeva, N. I.; Ivanovskii, A. L.
  • Physics of the Solid State, Vol. 45, Issue 9
  • DOI: 10.1134/1.1611221

Crystalline structure and the superconducting properties of NbB 2+ x
journal, August 2004


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

The ruby pressure standard to 150GPa
journal, December 2005

  • Chijioke, Akobuije D.; Nellis, W. J.; Soldatov, A.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2135877

Metastable superconductivity in niobium diborides
journal, August 2004


High-pressure synthesis of superconducting Nb1−xB2 (x=0–0.48) with the maximum Tc=9.2 K
journal, December 2002


Superconductivity in compressed iron: Role of spin fluctuations
journal, February 2002


Toward an internally consistent pressure scale
journal, May 2007

  • Fei, Y.; Ricolleau, A.; Frank, M.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 22
  • DOI: 10.1073/pnas.0609013104

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Lattice dynamics and electron-phonon coupling in transition-metal diborides
journal, May 2003


Compressibility of solids
journal, January 1987

  • Vinet, P.; Ferrante, J.; Rose, J. H.
  • Journal of Geophysical Research, Vol. 92, Issue B9
  • DOI: 10.1029/JB092iB09p09319

Electronic structure, electron–phonon coupling, and multiband effects in MgB2
journal, March 2003


Optimized norm-conserving Vanderbilt pseudopotentials
journal, August 2013


Synthesis and characterization of a new superconductor Nb1−xMgxB2
journal, April 2007


Study of the superconducting properties of the new intermetallic compound ${{Zr}}_{1-x}{{Nb}}_{x}{B}_{2}$
journal, July 2016


Electron–phonon interaction in NbB2: a comparison with MgB2
journal, February 2003


The NbB2-phase revisited: Homogeneity range, defect structure, superconductivity
journal, August 2005


Evidence of multiband behavior in the superconducting alloy Zr0.96V0.04B2
journal, May 2013


Pressure calibration of diamond anvil Raman gauge to 310GPa
journal, August 2006

  • Akahama, Yuichi; Kawamura, Haruki
  • Journal of Applied Physics, Vol. 100, Issue 4
  • DOI: 10.1063/1.2335683

Cohesion in AlB2-Type Diborides: A First-Principles Study
journal, June 2002

  • Oguchi, Tamio
  • Journal of the Physical Society of Japan, Vol. 71, Issue 6
  • DOI: 10.1143/JPSJ.71.1495

Electronic structure, bonding, and ground-state properties of AlB_{2}-type transition-metal diborides
journal, January 2001


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Electron-phonon interaction in transition-metal diboridesTB2(T=Zr,Nb,Ta)studied by point-contact spectroscopy
journal, October 2002


Evidence for strong-coupling s-wave superconductivity in MgB2: 11B-NMR study of MgB2 and the related materials
journal, October 2002


Low-temperature properties of single-crystal CrB 2
journal, August 2014


High critical field superconductivity at ambient pressure in MoB2 stabilized in the P6/mmm structure via Nb substitution
journal, November 2022


Superconductivity of non-stoichiometric intermetallic compound NbB2
journal, September 2008

  • Mudgel, Monika; Awana, V. P. S.; Bhalla, G. L.
  • Solid State Communications, Vol. 147, Issue 11-12
  • DOI: 10.1016/j.ssc.2008.07.006

Hardness and elastic moduli of high pressure synthesized MoB 2 and WB 2 compacts
journal, June 2013


Hybrid s -wave superconductivity in CrB2
journal, July 2023


Q uantum ESPRESSO toward the exascale
journal, April 2020

  • Giannozzi, Paolo; Baseggio, Oscar; Bonfà, Pietro
  • The Journal of Chemical Physics, Vol. 152, Issue 15
  • DOI: 10.1063/5.0005082

Dependence of the superconducting transition temperature of single and polycrystalline MgB2 on hydrostatic pressure
journal, March 2003


High pressure–high temperature equations of state of neon and diamond
journal, March 2008

  • Dewaele, Agnès; Datchi, Frédéric; Loubeyre, Paul
  • Physical Review B, Vol. 77, Issue 9, Article No. 094106
  • DOI: 10.1103/PhysRevB.77.094106

X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x
journal, April 2006


Structure and superconductivity in Zr-stabilized, nonstoichiometric molybdenum diboride
journal, November 2002


New Superconducting Borides and Nitrides
journal, April 1951


Direct observation of a pressure-induced metal-to-semiconductor transition in lithium
journal, March 2009


Clean-limit superconductivity in Im3¯m H3S synthesized from sulfur and hydrogen donor ammonia borane
journal, June 2022


Superconductivity and crystal growth of NbB2
journal, October 2005


Review of the superconducting properties of MgB 2
journal, November 2001


Pressure-induced superconductivity at 32 K in MoB2
journal, February 2023

  • Pei, Cuiying; Zhang, Jianfeng; Wang, Qi
  • National Science Review, Vol. 10, Issue 5
  • DOI: 10.1093/nsr/nwad034

Pressure tuning the Fermi level through the Dirac point of giant Rashba semiconductor BiTeI
journal, August 2014


A search for superconductivity below 1 k in transition metal borides
journal, September 1979


MoB2 under pressure: Superconducting Mo enhanced by boron
journal, December 2021


Creating superconductivity in WB2 through pressure-induced metastable planar defects
journal, December 2022


Elastic properties of superconducting NbB2+xobtained from first-principles calculations
journal, August 2007


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Superconductivity of magnesium diboride
journal, July 2015


Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction
journal, March 1988


Superconductivity: The Transition Temperature Peak Below Four Electrons per Atom
journal, September 1970

  • Cooper, A. S.; Corenzwit, E.; Longinotti, L. D.
  • Proceedings of the National Academy of Sciences, Vol. 67, Issue 1
  • DOI: 10.1073/pnas.67.1.313

Nonmagnetic piston–cylinder pressure cell for use at 35 kbar and above
journal, August 1999

  • Walker, I. R.
  • Review of Scientific Instruments, Vol. 70, Issue 8
  • DOI: 10.1063/1.1149927

Electron transport in diborides: Observation of superconductivity in ZrB2
journal, May 2001

  • Gasparov, V. A.; Sidorov, N. S.; Zver’kova, I. I.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 73, Issue 10
  • DOI: 10.1134/1.1387521

A profile refinement method for nuclear and magnetic structures
journal, June 1969


Optimization algorithm for the generation of ONCV pseudopotentials
journal, November 2015


Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
journal, January 2019


Studies of Compounds for Superconductivity
journal, April 1953


Superconductivity of MgB 2 : Covalent Bonds Driven Metallic
journal, May 2001


Superconducting Tc and Electron-Phonon Coupling in Nb to 132 GPa: Magnetic Susceptibility at Megabar Pressures
journal, November 1997


Dependence of T c on hydrostatic pressure in superconducting MgB 2
journal, August 2001


Advanced capabilities for materials modelling with Quantum ESPRESSO
journal, October 2017

  • Giannozzi, P.; Andreussi, O.; Brumme, T.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 46
  • DOI: 10.1088/1361-648X/aa8f79