DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

Abstract

LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, δr, down to δr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When themore » thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30–50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Aeronautics and Space Administration (NASA)
Contributing Org.:
LiteBIRD Collaboration
OSTI Identifier:
1998775
Grant/Contract Number:  
AC02-76SF00515; 80NSSC18K0132
Resource Type:
Accepted Manuscript
Journal Name:
Astronomy and Astrophysics
Additional Journal Information:
Journal Volume: 676; Journal ID: ISSN 0004-6361
Publisher:
EDP Sciences
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; ISM; cosmology; observations; cosmic background radiation; polarization; cosmological parameters; galaxy

Citation Formats

Fuskeland, U., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A. J., Eriksen, H. K., Errard, J., Génova-Santos, R. T., Hasebe, T., Hubmayr, J., Imada, H., Krachmalnicoff, N., Lamagna, L., Pisano, G., Poletti, D., Remazeilles, M., Thompson, K. L., Vacher, L., Wehus, I. K., Azzoni, S., Ballardini, M., Barreiro, R. B., Bartolo, N., Basyrov, A., Beck, D., Bersanelli, M., Bortolami, M., Brilenkov, M., Calabrese, E., Carones, A., Casas, F. J., Cheung, K., Chluba, J., Clark, S. E., Clermont, L., Columbro, F., Coppolecchia, A., D’Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Finelli, F., Franceschet, C., Galloni, G., Galloway, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gruppuso, A., Hargrave, P., Hattori, M., Hazumi, M., Hergt, L. T., Herman, D., Herranz, D., Hivon, E., Hoang, T. D., Kohri, K., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Lonappan, A. I., Luzzi, G., Maffei, B., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Migliaccio, M., Montier, L., Morgante, G., Mot, B., Mousset, L., Nagata, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Novelli, A., Pagano, L., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Patanchon, G., Pelgrims, V., Piacentini, F., Piccirilli, G., Polenta, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rubino-Martin, J. A., Savini, G., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Stever, S. L., Stutzer, N., Sullivan, R. M., Takakura, H., Terenzi, L., Thommesen, H., Tristram, M., Tsuji, M., Vielva, P., Weller, J., Westbrook, B., Weymann-Despres, G., Wollack, E. J., and Zannoni, M. Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations. United States: N. p., 2023. Web. doi:10.1051/0004-6361/202346155.
Fuskeland, U., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A. J., Eriksen, H. K., Errard, J., Génova-Santos, R. T., Hasebe, T., Hubmayr, J., Imada, H., Krachmalnicoff, N., Lamagna, L., Pisano, G., Poletti, D., Remazeilles, M., Thompson, K. L., Vacher, L., Wehus, I. K., Azzoni, S., Ballardini, M., Barreiro, R. B., Bartolo, N., Basyrov, A., Beck, D., Bersanelli, M., Bortolami, M., Brilenkov, M., Calabrese, E., Carones, A., Casas, F. J., Cheung, K., Chluba, J., Clark, S. E., Clermont, L., Columbro, F., Coppolecchia, A., D’Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Finelli, F., Franceschet, C., Galloni, G., Galloway, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gruppuso, A., Hargrave, P., Hattori, M., Hazumi, M., Hergt, L. T., Herman, D., Herranz, D., Hivon, E., Hoang, T. D., Kohri, K., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Lonappan, A. I., Luzzi, G., Maffei, B., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Migliaccio, M., Montier, L., Morgante, G., Mot, B., Mousset, L., Nagata, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Novelli, A., Pagano, L., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Patanchon, G., Pelgrims, V., Piacentini, F., Piccirilli, G., Polenta, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rubino-Martin, J. A., Savini, G., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Stever, S. L., Stutzer, N., Sullivan, R. M., Takakura, H., Terenzi, L., Thommesen, H., Tristram, M., Tsuji, M., Vielva, P., Weller, J., Westbrook, B., Weymann-Despres, G., Wollack, E. J., & Zannoni, M. Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations. United States. https://doi.org/10.1051/0004-6361/202346155
Fuskeland, U., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A. J., Eriksen, H. K., Errard, J., Génova-Santos, R. T., Hasebe, T., Hubmayr, J., Imada, H., Krachmalnicoff, N., Lamagna, L., Pisano, G., Poletti, D., Remazeilles, M., Thompson, K. L., Vacher, L., Wehus, I. K., Azzoni, S., Ballardini, M., Barreiro, R. B., Bartolo, N., Basyrov, A., Beck, D., Bersanelli, M., Bortolami, M., Brilenkov, M., Calabrese, E., Carones, A., Casas, F. J., Cheung, K., Chluba, J., Clark, S. E., Clermont, L., Columbro, F., Coppolecchia, A., D’Alessandro, G., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Finelli, F., Franceschet, C., Galloni, G., Galloway, M., Gerbino, M., Gervasi, M., Ghigna, T., Giardiello, S., Gjerløw, E., Gruppuso, A., Hargrave, P., Hattori, M., Hazumi, M., Hergt, L. T., Herman, D., Herranz, D., Hivon, E., Hoang, T. D., Kohri, K., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Lonappan, A. I., Luzzi, G., Maffei, B., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Migliaccio, M., Montier, L., Morgante, G., Mot, B., Mousset, L., Nagata, R., Namikawa, T., Nati, F., Natoli, P., Nerval, S., Novelli, A., Pagano, L., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Patanchon, G., Pelgrims, V., Piacentini, F., Piccirilli, G., Polenta, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rubino-Martin, J. A., Savini, G., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Stever, S. L., Stutzer, N., Sullivan, R. M., Takakura, H., Terenzi, L., Thommesen, H., Tristram, M., Tsuji, M., Vielva, P., Weller, J., Westbrook, B., Weymann-Despres, G., Wollack, E. J., and Zannoni, M. Fri . "Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations". United States. https://doi.org/10.1051/0004-6361/202346155. https://www.osti.gov/servlets/purl/1998775.
@article{osti_1998775,
title = {Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations},
author = {Fuskeland, U. and Aumont, J. and Aurlien, R. and Baccigalupi, C. and Banday, A. J. and Eriksen, H. K. and Errard, J. and Génova-Santos, R. T. and Hasebe, T. and Hubmayr, J. and Imada, H. and Krachmalnicoff, N. and Lamagna, L. and Pisano, G. and Poletti, D. and Remazeilles, M. and Thompson, K. L. and Vacher, L. and Wehus, I. K. and Azzoni, S. and Ballardini, M. and Barreiro, R. B. and Bartolo, N. and Basyrov, A. and Beck, D. and Bersanelli, M. and Bortolami, M. and Brilenkov, M. and Calabrese, E. and Carones, A. and Casas, F. J. and Cheung, K. and Chluba, J. and Clark, S. E. and Clermont, L. and Columbro, F. and Coppolecchia, A. and D’Alessandro, G. and de Bernardis, P. and de Haan, T. and de la Hoz, E. and De Petris, M. and Della Torre, S. and Diego-Palazuelos, P. and Finelli, F. and Franceschet, C. and Galloni, G. and Galloway, M. and Gerbino, M. and Gervasi, M. and Ghigna, T. and Giardiello, S. and Gjerløw, E. and Gruppuso, A. and Hargrave, P. and Hattori, M. and Hazumi, M. and Hergt, L. T. and Herman, D. and Herranz, D. and Hivon, E. and Hoang, T. D. and Kohri, K. and Lattanzi, M. and Lee, A. T. and Leloup, C. and Levrier, F. and Lonappan, A. I. and Luzzi, G. and Maffei, B. and Martínez-González, E. and Masi, S. and Matarrese, S. and Matsumura, T. and Migliaccio, M. and Montier, L. and Morgante, G. and Mot, B. and Mousset, L. and Nagata, R. and Namikawa, T. and Nati, F. and Natoli, P. and Nerval, S. and Novelli, A. and Pagano, L. and Paiella, A. and Paoletti, D. and Pascual-Cisneros, G. and Patanchon, G. and Pelgrims, V. and Piacentini, F. and Piccirilli, G. and Polenta, G. and Puglisi, G. and Raffuzzi, N. and Ritacco, A. and Rubino-Martin, J. A. and Savini, G. and Scott, D. and Sekimoto, Y. and Shiraishi, M. and Signorelli, G. and Stever, S. L. and Stutzer, N. and Sullivan, R. M. and Takakura, H. and Terenzi, L. and Thommesen, H. and Tristram, M. and Tsuji, M. and Vielva, P. and Weller, J. and Westbrook, B. and Weymann-Despres, G. and Wollack, E. J. and Zannoni, M.},
abstractNote = {LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, δr, down to δr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30–50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.},
doi = {10.1051/0004-6361/202346155},
journal = {Astronomy and Astrophysics},
number = ,
volume = 676,
place = {United States},
year = {Fri Aug 04 00:00:00 EDT 2023},
month = {Fri Aug 04 00:00:00 EDT 2023}
}

Works referenced in this record:

Three‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Polarization Analysis
journal, June 2007

  • Page, L.; Hinshaw, G.; Komatsu, E.
  • The Astrophysical Journal Supplement Series, Vol. 170, Issue 2
  • DOI: 10.1086/513699

Single superconducting energy gap in pure niobium
journal, January 1975

  • Novotny, V.; Meincke, P. P. M.
  • Journal of Low Temperature Physics, Vol. 18, Issue 1-2
  • DOI: 10.1007/BF00116976

Frequency dependence of the thermal dust E/B ratio and EB correlation: Insights from the spin-moment expansion
journal, April 2023


Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz
journal, November 1981


Evidence for line-of-sight frequency decorrelation of polarized dust emission in Planck data
journal, March 2021


Foreground separation and constraints on primordial gravitational waves with the PICO space mission
journal, June 2023

  • Aurlien, Ragnhild; Remazeilles, Mathieu; Belkner, Sebastian
  • Journal of Cosmology and Astroparticle Physics, Vol. 2023, Issue 06
  • DOI: 10.1088/1475-7516/2023/06/034

Chaotic inflation
journal, September 1983


Inflationary universe: A possible solution to the horizon and flatness problems
journal, January 1981


Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band
journal, January 2016


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

Three‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Foreground Polarization
journal, August 2007

  • Kogut, A.; Dunkley, J.; Bennett, C. L.
  • The Astrophysical Journal, Vol. 665, Issue 1
  • DOI: 10.1086/519754

Improved galactic foreground removal for B-mode detection with clustering methods
journal, January 2022

  • Puglisi, Giuseppe; Mihaylov, Gueorgui; Panopoulou, Georgia V.
  • Monthly Notices of the Royal Astronomical Society, Vol. 511, Issue 2
  • DOI: 10.1093/mnras/stac069

S–PASS view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations
journal, October 2018


Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking
journal, April 1982


High precision modeling of polarized signals: Moment expansion method generalized to spin-2 fields
journal, December 2022


Rethinking CMB foregrounds: systematic extension of foreground parametrizations
journal, August 2017

  • Chluba, Jens; Hill, James Colin; Abitbol, Maximilian H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 1
  • DOI: 10.1093/mnras/stx1982

Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
journal, November 2022

  • , ; Allys, E.; Arnold, K.
  • Progress of Theoretical and Experimental Physics, Vol. 2023, Issue 4
  • DOI: 10.1093/ptep/ptac150

Planck 2018 results: I. Overview and the cosmological legacy of Planck
journal, September 2020


A full sky, low foreground, high resolution CMB map from WMAP
journal, November 2008


Planck 2018 results: IV. Diffuse component separation
journal, September 2020


Planck 2015 results : XXV. Diffuse low-frequency Galactic foregrounds
journal, September 2016


First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Foreground Emission
journal, September 2003

  • Bennett, C. L.; Hill, R. S.; Hinshaw, G.
  • The Astrophysical Journal Supplement Series, Vol. 148, Issue 1
  • DOI: 10.1086/377252

The effect of temperature mixing on the observable ( T , β )-relation of interstellar dust clouds
journal, February 2012


Joint Bayesian Component Separation and CMB Power Spectrum Estimation
journal, March 2008

  • Eriksen, H. K.; Jewell, J. B.; Dickinson, C.
  • The Astrophysical Journal, Vol. 676, Issue 1
  • DOI: 10.1086/525277

Beyondplanck
journal, June 2023


Maximum likelihood algorithm for parametric component separation in cosmic microwave background experiments
journal, January 2009


Cosmological information in weak lensing peaks
journal, August 2011


Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions
journal, February 2016

  • Remazeilles, M.; Dickinson, C.; Eriksen, H. K. K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 2
  • DOI: 10.1093/mnras/stw441

Mission Design of LiteBIRD
journal, January 2014

  • Matsumura, T.; Akiba, Y.; Borrill, J.
  • Journal of Low Temperature Physics, Vol. 176, Issue 5-6
  • DOI: 10.1007/s10909-013-0996-1

Dust moments: towards a new modeling of the galactic dust emission for CMB B -modes analysis
journal, March 2021


Beyondplanck
journal, June 2023


First-order phase transition of a vacuum and the expansion of the Universe
journal, July 1981


Power Spectrum Estimation from High‐Resolution Maps by Gibbs Sampling
journal, December 2004

  • Eriksen, H. K.; O’Dwyer, I. J.; Jewell, J. B.
  • The Astrophysical Journal Supplement Series, Vol. 155, Issue 2
  • DOI: 10.1086/425219

Dust polarization spectral dependence from Planck HFI data
journal, February 2023


From BEYONDPLANCK to COSMOGLOBE: Preliminary WMAP Q-band analysis
journal, June 2023


A Unified Model of Grain Alignment: Radiative Alignment of Interstellar Grains with Magnetic Inclusions
journal, November 2016


Planck 2018 results: VI. Cosmological parameters
journal, September 2020


Localized Tight Frames on Spheres
journal, January 2006

  • Narcowich, F. J.; Petrushev, P.; Ward, J. D.
  • SIAM Journal on Mathematical Analysis, Vol. 38, Issue 2
  • DOI: 10.1137/040614359

SPATIAL VARIATIONS IN THE SPECTRAL INDEX OF POLARIZED SYNCHROTRON EMISSION IN THE 9 yr WMAP SKY MAPS
journal, July 2014


Planck intermediate results: LVII. Joint Planck LFI and HFI data processing
journal, November 2020


A minimal power-spectrum-based moment expansion for CMB B-mode searches
journal, May 2021


Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere
journal, March 1987

  • Lawson, K. D.; Mayer, C. J.; Osborne, J. L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 225, Issue 2
  • DOI: 10.1093/mnras/225.2.307

Planck 2015 results : IX. Diffuse component separation: CMB maps
journal, September 2016


Practical wavelet design on the sphere
journal, March 2009

  • Guilloux, Frédéric; Faÿ, Gilles; Cardoso, Jean-François
  • Applied and Computational Harmonic Analysis, Vol. 26, Issue 2
  • DOI: 10.1016/j.acha.2008.03.003

The Python Sky Model: software for simulating the Galactic microwave sky
journal, May 2017

  • Thorne, B.; Dunkley, J.; Alonso, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 3
  • DOI: 10.1093/mnras/stx949

A new type of isotropic cosmological models without singularity
journal, March 1980


Moment expansion of polarized dust SED: A new path towards capturing the CMB B-modes with LiteBIRD
journal, April 2022


Peeling off foregrounds with the constrained moment ILC method to unveil primordial CMB B modes
journal, March 2021

  • Remazeilles, Mathieu; Rotti, Aditya; Chluba, Jens
  • Monthly Notices of the Royal Astronomical Society, Vol. 503, Issue 2
  • DOI: 10.1093/mnras/stab648

Thermodynamics and Charging of Interstellar iron Nanoparticles
journal, January 2017


Constraints on the spectral index of polarized synchrotron emission from WMAP and Faraday-corrected S-PASS data
journal, February 2021


Statistics of cosmic microwave background polarization
journal, June 1997

  • Kamionkowski, Marc; Kosowsky, Arthur; Stebbins, Albert
  • Physical Review D, Vol. 55, Issue 12
  • DOI: 10.1103/PhysRevD.55.7368

A Determination of the Spectral Index of Galactic Synchrotron Emission in the 1–10 GHz Range
journal, October 1998

  • Platania, P.; Bensadoun, M.; Bersanelli, M.
  • The Astrophysical Journal, Vol. 505, Issue 2
  • DOI: 10.1086/306175

CMB and SZ effect separation with constrained Internal Linear Combinations: CMB and SZ separation with constrained ILC
journal, November 2010

  • Remazeilles, Mathieu; Delabrouille, Jacques; Cardoso, Jean-François
  • Monthly Notices of the Royal Astronomical Society, Vol. 410, Issue 4
  • DOI: 10.1111/j.1365-2966.2010.17624.x

Planck 2013 results. XII. Diffuse component separation
journal, October 2014


Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications
journal, January 2001

  • Pardo, J. R.; Cernicharo, J.; Serabyn, E.
  • IEEE Transactions on Antennas and Propagation, Vol. 49, Issue 12
  • DOI: 10.1109/8.982447

Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?
journal, June 2015

  • Tassis, Konstantinos; Pavlidou, Vasiliki
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 451, Issue 1
  • DOI: 10.1093/mnrasl/slv077