DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1− yz O 2 Cathodes

Abstract

Abstract Most research on the electrochemical dynamics in materials for high‐energy Li‐ion batteries has focused on the global behavior of the electrode. This approach is susceptible to misleading analyses resulting from idiosyncratic kinetic conditions, such as surface impurities inducing an apparent two‐phase transformation within LiNi 0.8 Co 0.15 Al 0.05 O 2 . Here, nano‐focused X‐ray probes are used to measure delithiation operando at the scale of secondary particle agglomerates in layered cathode materials during charge. After an initial latent phase, individual secondary particles undergo rapid, stochastic, and largely uniform delithiation, which is in contrast with the gradual increase in cell potential. This behavior reproduces across several layered oxides. Operando X‐ray microdiffraction (‐XRD) leverages the relationship between Li content and lattice parameter to further reveal that rate acceleration occurs between Li‐site fraction ( x Li ) ≈0.9 and ≈0.5 for LiNi 0.8 Co 0.15 Al 0.05 O 2 . Physics‐based modeling shows that, to reproduce the experimental results, the exchange current density ( i 0 ) must depend on x Li , and that i 0 should increase rapidly over three orders of magnitude at the transition point. The specifics and implications of this jump in i 0 are crucialmore » to understanding the charge‐storage reaction of Li‐ion battery cathodes.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [7];  [8];  [6];  [5];  [3]; ORCiD logo [2]
  1. Department of Chemistry University of Illinois at Chicago 845 W Taylor St, 4500 SES (MC 111) Chicago IL 60607 USA, Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA, X‐ray Science Division, Advanced Photon Source Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
  2. Department of Chemistry University of Illinois at Chicago 845 W Taylor St, 4500 SES (MC 111) Chicago IL 60607 USA
  3. Department of Materials Science and Engineering University of Michigan 2300 Hayward St Ann Arbor MI 48109 USA
  4. Advanced Light Source Lawrence Berkeley National Laboratory 6 Cyclotron Rd Berkeley CA 94720 USA, Department of Physics Chungbuk National University Chungdae‐ro 1, Seowon‐Gu Cheongju Chungbuk 28644 South Korea
  5. Energy Storage Research Group, Department of Materials Science and Engineering Rutgers, The State University of New Jersey
  6. Department of Chemistry Stony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
  7. X‐ray Science Division, Advanced Photon Source Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
  8. Harbin Institute of Technology 92 Xida St, Nangang Harbin Heilongjiang China
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF)
OSTI Identifier:
1998007
Alternate Identifier(s):
OSTI ID: 1998009; OSTI ID: 2281209
Grant/Contract Number:  
AC02-05CH11231; ERCAP0017801; AC02-06CH11357; AC02-76SF00515; SC0012583; ACI-1053575
Resource Type:
Published Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 13 Journal Issue: 37; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wolfman, Mark, May, Brian M., Goel, Vishwas, Du, Sicen, Yu, Young‐Sang, Faenza, Nicholas V., Pereira, Nathalie, Grenier, Antonin, Wiaderek, Kamila M., Xu, Ruqing, Wang, Jiajun, Chapman, Karena W., Amatucci, Glenn G., Thornton, Katsuyo, and Cabana, Jordi. Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1− y − z O 2 Cathodes. Germany: N. p., 2023. Web. doi:10.1002/aenm.202300895.
Wolfman, Mark, May, Brian M., Goel, Vishwas, Du, Sicen, Yu, Young‐Sang, Faenza, Nicholas V., Pereira, Nathalie, Grenier, Antonin, Wiaderek, Kamila M., Xu, Ruqing, Wang, Jiajun, Chapman, Karena W., Amatucci, Glenn G., Thornton, Katsuyo, & Cabana, Jordi. Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1− y − z O 2 Cathodes. Germany. https://doi.org/10.1002/aenm.202300895
Wolfman, Mark, May, Brian M., Goel, Vishwas, Du, Sicen, Yu, Young‐Sang, Faenza, Nicholas V., Pereira, Nathalie, Grenier, Antonin, Wiaderek, Kamila M., Xu, Ruqing, Wang, Jiajun, Chapman, Karena W., Amatucci, Glenn G., Thornton, Katsuyo, and Cabana, Jordi. Sun . "Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1− y − z O 2 Cathodes". Germany. https://doi.org/10.1002/aenm.202300895.
@article{osti_1998007,
title = {Origin of Rapid Delithiation In Secondary Particles Of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi y Mn z Co 1− y − z O 2 Cathodes},
author = {Wolfman, Mark and May, Brian M. and Goel, Vishwas and Du, Sicen and Yu, Young‐Sang and Faenza, Nicholas V. and Pereira, Nathalie and Grenier, Antonin and Wiaderek, Kamila M. and Xu, Ruqing and Wang, Jiajun and Chapman, Karena W. and Amatucci, Glenn G. and Thornton, Katsuyo and Cabana, Jordi},
abstractNote = {Abstract Most research on the electrochemical dynamics in materials for high‐energy Li‐ion batteries has focused on the global behavior of the electrode. This approach is susceptible to misleading analyses resulting from idiosyncratic kinetic conditions, such as surface impurities inducing an apparent two‐phase transformation within LiNi 0.8 Co 0.15 Al 0.05 O 2 . Here, nano‐focused X‐ray probes are used to measure delithiation operando at the scale of secondary particle agglomerates in layered cathode materials during charge. After an initial latent phase, individual secondary particles undergo rapid, stochastic, and largely uniform delithiation, which is in contrast with the gradual increase in cell potential. This behavior reproduces across several layered oxides. Operando X‐ray microdiffraction (‐XRD) leverages the relationship between Li content and lattice parameter to further reveal that rate acceleration occurs between Li‐site fraction ( x Li ) ≈0.9 and ≈0.5 for LiNi 0.8 Co 0.15 Al 0.05 O 2 . Physics‐based modeling shows that, to reproduce the experimental results, the exchange current density ( i 0 ) must depend on x Li , and that i 0 should increase rapidly over three orders of magnitude at the transition point. The specifics and implications of this jump in i 0 are crucial to understanding the charge‐storage reaction of Li‐ion battery cathodes.},
doi = {10.1002/aenm.202300895},
journal = {Advanced Energy Materials},
number = 37,
volume = 13,
place = {Germany},
year = {Sun Sep 03 00:00:00 EDT 2023},
month = {Sun Sep 03 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.202300895

Save / Share:

Works referenced in this record:

Ultrafast ion transport at a cathode–electrolyte interface and its strong dependence on salt solvation
journal, June 2020


Double-slit photoelectron interference in strong-field ionization of the neon dimer
journal, January 2019


The use of mathematical modeling in the design of lithium/polymer battery systems
journal, October 1995


Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction-Zone Model
journal, January 1995

  • Newman, John
  • Journal of The Electrochemical Society, Vol. 142, Issue 1
  • DOI: 10.1149/1.2043956

Phase Evolution and Degradation Modes of Rm Li x Ni 1– yz Co y Al z O 2 Electrodes Cycled Near Complete Delithiation
journal, October 2018


Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2
journal, January 2008


Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries
journal, January 2009

  • Sasaki, Tsuyoshi; Nonaka, Takamasa; Oka, Hideaki
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3076136

Operando optical tracking of single-particle ion dynamics in batteries
journal, June 2021


Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes
journal, August 2014


Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries
journal, January 2018

  • Tsai, Ping-Chun; Wen, Bohua; Wolfman, Mark
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C8EE00001H

Characterization of Electronic and Ionic Transport in Li 1- x Ni 0 . 8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2015

  • Amin, Ruhul; Ravnsbæk, Dorthe Bomholdt; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0171507jes

Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode
journal, January 2017

  • Verma, Ankit; Smith, Kandler; Santhanagopalan, Shriram
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.1701713jes

There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material
journal, May 2019

  • Bianchini, Matteo; Roca-Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201812472

XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

On the electrochemistry of the nonaqueous lithium cell
journal, January 1984


Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries
journal, May 2020


Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries
journal, August 2017


Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte
journal, September 2008


Fictitious phase separation in Li layered oxides driven by electro-autocatalysis
journal, March 2021


SciPy 1.0: fundamental algorithms for scientific computing in Python
journal, February 2020


Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries
journal, September 2017


Impedance as a Tool for Investigating Aging in Lithium-Ion Porous Electrodes
journal, January 2008

  • Brown, Shelley; Mellgren, Niklas; Vynnycky, Michael
  • Journal of The Electrochemical Society, Vol. 155, Issue 4
  • DOI: 10.1149/1.2832654

A High Resolution, Hard X-ray Bio-imaging Facility at SSRL
journal, June 2008


Performance of Bellcore's plastic rechargeable Li-ion batteries
journal, July 1996


scikit-image: image processing in Python
journal, January 2014

  • van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan
  • PeerJ, Vol. 2
  • DOI: 10.7717/peerj.453

Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes
journal, March 2020

  • Grenier, Antonin; Reeves, Philip J.; Liu, Hao
  • Journal of the American Chemical Society, Vol. 142, Issue 15
  • DOI: 10.1021/jacs.9b13551

Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries
journal, August 2016

  • Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan
  • Advanced Energy Materials, Vol. 6, Issue 21
  • DOI: 10.1002/aenm.201600597

Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
journal, January 2012

  • Liu, G.; Zheng, H.; Song, X.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.024203jes

Mesoscale Phase Distribution in Single Particles of LiFePO 4 following Lithium Deintercalation
journal, April 2013

  • Boesenberg, Ulrike; Meirer, Florian; Liu, Yijin
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400106k

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice
journal, January 2021


Effect of a Size-Dependent Equilibrium Potential on Nano-LiFePO 4 Particle Interactions
journal, January 2015

  • Orvananos, Bernardo; Yu, Hui-Chia; Malik, Rahul
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0161509jes

(De)Lithiation Mechanism of Hierarchically Layered LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathodes during High-Voltage Cycling
journal, November 2018

  • Hua, Weibo; Schwarz, Björn; Knapp, Michael
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0051903jes

Stochasticity at Scales Leads to Lithium Intercalation Cascade
journal, March 2020

  • Mistry, Aashutosh; Smith, Kandler; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 14
  • DOI: 10.1021/acsami.9b23155

Electrochemical reactivity of pyrolytic carbon film electrodes in organic carbonate electrolytes
journal, September 2014


Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries
journal, September 2012

  • Yu, Hui-Chia; Chen, Hsun-Yi; Thornton, K.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 20, Issue 7
  • DOI: 10.1088/0965-0393/20/7/075008

Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes
journal, January 2014

  • Orvananos, Bernardo; Ferguson, Todd R.; Yu, Hui-Chia
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.024404jes

In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material
journal, June 2005

  • Deb, Aniruddha; Bergmann, Uwe; Cramer, Stephen P.
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1921328

The importance of the lithium ion transference number in lithium/polymer cells
journal, September 1994


Matplotlib: A 2D Graphics Environment
journal, January 2007


A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD
journal, August 2006


Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
journal, January 2018

  • Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 7
  • DOI: 10.1021/acsami.7b17771

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Asynchronous-to-Synchronous Transition of Li Reactions in Solid-Solution Cathodes
journal, July 2022


Structural Changes and Microstrain Generated on LiNi 0.80 Co 0.15 Al 0.05 O 2 during Cycling: Effects on the Electrochemical Performance
journal, January 2015

  • Robert, Rosa; Novák, Petr
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0721509jes

A Threshold Selection Method from Gray-Level Histograms
journal, January 1979


Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging
journal, April 2015

  • Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7883

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping
journal, April 2017