DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reducing uncertainty of high-latitude ecosystem models through identification of key parameters

Abstract

Abstract Climate change is having significant impacts on Earth’s ecosystems and carbon budgets, and in the Arctic may drive a shift from an historic carbon sink to a source. Large uncertainties in terrestrial biosphere models (TBMs) used to forecast Arctic changes demonstrate the challenges of determining the timing and extent of this possible switch. This spread in model predictions can limit the ability of TBMs to guide management and policy decisions. One of the most influential sources of model uncertainty is model parameterization. Parameter uncertainty results in part from a mismatch between available data in databases and model needs. We identify that mismatch for three TBMs, DVM-DOS-TEM, SIPNET and ED2, and four databases with information on Arctic and boreal above- and belowground traits that may be applied to model parametrization. However, focusing solely on such data gaps can introduce biases towards simple models and ignores structural model uncertainty, another main source for model uncertainty. Therefore, we develop a causal loop diagram (CLD) of the Arctic and boreal ecosystem that includes unquantified, and thus unmodeled, processes. We map model parameters to processes in the CLD and assess parameter vulnerability via the internal network structure. One important substructure, feed forward loops (FFLs),more » describe processes that are linked both directly and indirectly. When the model parameters are data-informed, these indirect processes might be implicitly included in the model, but if not, they have the potential to introduce significant model uncertainty. We find that the parameters describing the impact of local temperature on microbial activity are associated with a particularly high number of FFLs but are not constrained well by existing data. By employing ecological models of varying complexity, databases, and network methods, we identify the key parameters responsible for limited model accuracy. They should be prioritized for future data sampling to reduce model uncertainty.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1993662
Alternate Identifier(s):
OSTI ID: 1996608
Report Number(s):
BNL-224658-2023-JAAM
Journal ID: ISSN 1748-9326
Grant/Contract Number:  
SC0012704; NGEE Arctic
Resource Type:
Published Article
Journal Name:
Environmental Research Letters
Additional Journal Information:
Journal Name: Environmental Research Letters Journal Volume: 18 Journal Issue: 8; Journal ID: ISSN 1748-9326
Publisher:
IOP Publishing
Country of Publication:
United Kingdom
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; complex networks; causal loop diagram; model uncertainty; Arctic ecosystem; ecological databases

Citation Formats

Mevenkamp, Hannah, Wunderling, Nico, Bhatt, Uma, Carman, Tobey, Friedemann Donges, Jonathan, Genet, Helene, Serbin, Shawn, Winkelmann, Ricarda, and Susanne Euskirchen, Eugenie. Reducing uncertainty of high-latitude ecosystem models through identification of key parameters. United Kingdom: N. p., 2023. Web. doi:10.1088/1748-9326/ace637.
Mevenkamp, Hannah, Wunderling, Nico, Bhatt, Uma, Carman, Tobey, Friedemann Donges, Jonathan, Genet, Helene, Serbin, Shawn, Winkelmann, Ricarda, & Susanne Euskirchen, Eugenie. Reducing uncertainty of high-latitude ecosystem models through identification of key parameters. United Kingdom. https://doi.org/10.1088/1748-9326/ace637
Mevenkamp, Hannah, Wunderling, Nico, Bhatt, Uma, Carman, Tobey, Friedemann Donges, Jonathan, Genet, Helene, Serbin, Shawn, Winkelmann, Ricarda, and Susanne Euskirchen, Eugenie. Thu . "Reducing uncertainty of high-latitude ecosystem models through identification of key parameters". United Kingdom. https://doi.org/10.1088/1748-9326/ace637.
@article{osti_1993662,
title = {Reducing uncertainty of high-latitude ecosystem models through identification of key parameters},
author = {Mevenkamp, Hannah and Wunderling, Nico and Bhatt, Uma and Carman, Tobey and Friedemann Donges, Jonathan and Genet, Helene and Serbin, Shawn and Winkelmann, Ricarda and Susanne Euskirchen, Eugenie},
abstractNote = {Abstract Climate change is having significant impacts on Earth’s ecosystems and carbon budgets, and in the Arctic may drive a shift from an historic carbon sink to a source. Large uncertainties in terrestrial biosphere models (TBMs) used to forecast Arctic changes demonstrate the challenges of determining the timing and extent of this possible switch. This spread in model predictions can limit the ability of TBMs to guide management and policy decisions. One of the most influential sources of model uncertainty is model parameterization. Parameter uncertainty results in part from a mismatch between available data in databases and model needs. We identify that mismatch for three TBMs, DVM-DOS-TEM, SIPNET and ED2, and four databases with information on Arctic and boreal above- and belowground traits that may be applied to model parametrization. However, focusing solely on such data gaps can introduce biases towards simple models and ignores structural model uncertainty, another main source for model uncertainty. Therefore, we develop a causal loop diagram (CLD) of the Arctic and boreal ecosystem that includes unquantified, and thus unmodeled, processes. We map model parameters to processes in the CLD and assess parameter vulnerability via the internal network structure. One important substructure, feed forward loops (FFLs), describe processes that are linked both directly and indirectly. When the model parameters are data-informed, these indirect processes might be implicitly included in the model, but if not, they have the potential to introduce significant model uncertainty. We find that the parameters describing the impact of local temperature on microbial activity are associated with a particularly high number of FFLs but are not constrained well by existing data. By employing ecological models of varying complexity, databases, and network methods, we identify the key parameters responsible for limited model accuracy. They should be prioritized for future data sampling to reduce model uncertainty.},
doi = {10.1088/1748-9326/ace637},
journal = {Environmental Research Letters},
number = 8,
volume = 18,
place = {United Kingdom},
year = {Thu Aug 03 00:00:00 EDT 2023},
month = {Thu Aug 03 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1088/1748-9326/ace637

Save / Share:

Works referenced in this record:

The Potential to Narrow Uncertainty in Regional Climate Predictions
journal, August 2009

  • Hawkins, Ed; Sutton, Rowan
  • Bulletin of the American Meteorological Society, Vol. 90, Issue 8
  • DOI: 10.1175/2009BAMS2607.1

Self‐Amplifying Feedbacks Accelerate Greening and Warming of the Arctic
journal, July 2018

  • Zhang, W.; Miller, P. A.; Jansson, C.
  • Geophysical Research Letters, Vol. 45, Issue 14
  • DOI: 10.1029/2018GL077830

Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra
journal, December 2016

  • te Beest, Mariska; Sitters, Judith; Ménard, Cécile B.
  • Environmental Research Letters, Vol. 11, Issue 12
  • DOI: 10.1088/1748-9326/aa5128

Laplace’s Demon and the Adventures of His Apprentices
journal, January 2014

  • Frigg, Roman; Bradley, Seamus; Du, Hailiang
  • Philosophy of Science, Vol. 81, Issue 1
  • DOI: 10.1086/674416

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime: TERRESTRIAL AND FRESHWATER ECOSYSTEMS
journal, March 2016

  • Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 3
  • DOI: 10.1002/2015JG003133

Carbon Flux Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is Consistent With Terrestrial Biosphere Model Estimates
journal, March 2020

  • Quetin, Gregory R.; Bloom, A. Anthony; Bowman, Kevin W.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 3
  • DOI: 10.1029/2019MS001889

High risk of permafrost thaw
journal, November 2011

  • Schuur, Edward A. G.; Abbott, Benjamin
  • Nature, Vol. 480, Issue 7375
  • DOI: 10.1038/480032a

The ERA5 global reanalysis
journal, June 2020

  • Hersbach, Hans; Bell, Bill; Berrisford, Paul
  • Quarterly Journal of the Royal Meteorological Society, Vol. 146, Issue 730
  • DOI: 10.1002/qj.3803

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Network motifs: theory and experimental approaches
journal, June 2007


A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes: PEcAn/ED model-data uncertainty analysis
journal, March 2014

  • Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002392

Longer growing seasons lead to less carbon sequestration by a subalpine forest
journal, February 2010


Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Permafrost response to vegetation greenness variation in the Arctic tundra through positive feedback in surface air temperature and snow cover
journal, April 2019


PyGMT: A Python interface for the Generic Mapping Tools
software, January 2023


Warming impacts on boreal fen CO 2 exchange under wet and dry conditions
journal, April 2019

  • Laine, Anna M.; Mäkiranta, Päivi; Laiho, Raija
  • Global Change Biology, Vol. 25, Issue 6
  • DOI: 10.1111/gcb.14617

Remote Sensing of Tundra Ecosystems Using High Spectral Resolution Reflectance: Opportunities and Challenges
journal, February 2022

  • Nelson, Peter R.; Maguire, Andrew J.; Pierrat, Zoe
  • Journal of Geophysical Research: Biogeosciences, Vol. 127, Issue 2
  • DOI: 10.1029/2021JG006697

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Tundra be dammed: Beaver colonization of the Arctic
journal, June 2018

  • Tape, Ken D.; Jones, Benjamin M.; Arp, Christopher D.
  • Global Change Biology, Vol. 24, Issue 10
  • DOI: 10.1111/gcb.14332

Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
journal, October 2011

  • Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin
  • Environmental Research Letters, Vol. 6, Issue 4
  • DOI: 10.1088/1748-9326/6/4/045509

Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks
journal, March 2018

  • Gorochowski, Thomas E.; Grierson, Claire S.; di Bernardo, Mario
  • Science Advances, Vol. 4, Issue 3
  • DOI: 10.1126/sciadv.aap9751

Methane Feedbacks to the Global Climate System in a Warmer World
journal, March 2018

  • Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas
  • Reviews of Geophysics, Vol. 56, Issue 1
  • DOI: 10.1002/2017RG000559

Increasing wildfires threaten historic carbon sink of boreal forest soils
journal, August 2019


Technical note: A hydrological routing scheme for the Ecosystem Demography model (ED2+R) tested in the Tapajós River basin in the Brazilian Amazon
journal, January 2017

  • Pereira, Fabio F.; Farinosi, Fabio; Arias, Mauricio E.
  • Hydrology and Earth System Sciences, Vol. 21, Issue 9
  • DOI: 10.5194/hess-21-4629-2017

Key indicators of Arctic climate change: 1971–2017
journal, April 2019

  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle
  • Environmental Research Letters, Vol. 14, Issue 4
  • DOI: 10.1088/1748-9326/aafc1b

Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities
journal, December 2021

  • Euskirchen, Eugénie S.; Serbin, Shawn P.; Carman, Tobey B.
  • Ecological Applications, Vol. 32, Issue 2
  • DOI: 10.1002/eap.2499

The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska
journal, December 2017

  • Genet, Hélène; He, Yujie; Lyu, Zhou
  • Ecological Applications, Vol. 28, Issue 1
  • DOI: 10.1002/eap.1641

The Arctic
journal, August 2022

  • Thoman, Richard L.; Druckenmiller, Matthew L.; Moon, Twila A.
  • Bulletin of the American Meteorological Society, Vol. 103, Issue 8
  • DOI: 10.1175/BAMS-D-22-0082.1

Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks
journal, June 2009

  • Euskirchen, E. S.; McGuire, A. D.; Chapin, F. S.
  • Ecological Applications, Vol. 19, Issue 4
  • DOI: 10.1890/08-0806.1

Network motifs shape distinct functioning of Earth’s moisture recycling hubs
journal, November 2022


A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
journal, February 2017

  • Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
  • New Phytologist, Vol. 215, Issue 1, p. 15-26
  • DOI: 10.1111/nph.14486

Missing pieces to modeling the Arctic-Boreal puzzle
journal, February 2018

  • Fisher, Joshua B.; Hayes, Daniel J.; Schwalm, Christopher R.
  • Environmental Research Letters, Vol. 13, Issue 2
  • DOI: 10.1088/1748-9326/aa9d9a

Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
journal, January 2021


Network Motifs: Simple Building Blocks of Complex Networks
journal, October 2002


Cascading regime shifts within and across scales
journal, December 2018


Plant functional trait change across a warming tundra biome
journal, September 2018


Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability
journal, March 2001


Confidence, uncertainty and decision-support relevance in climate predictions
journal, June 2007

  • Stainforth, D. A.; Allen, M. R.; Tredger, E. R.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1857
  • DOI: 10.1098/rsta.2007.2074

Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change
journal, December 2012

  • Yuan, F. -M.; Yi, S. -H.; McGuire, A. D.
  • Ecological Applications, Vol. 22, Issue 8
  • DOI: 10.1890/11-1957.1

Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget
journal, February 2007


TRY - a global database of plant traits: TRY - A GLOBAL DATABASE OF PLANT TRAITS
journal, June 2011


New priorities for climate science and climate economics in the 2020s
journal, August 2020


A guide to ecosystem models and their environmental applications
journal, September 2020


How motifs condition critical thresholds for tipping cascades in complex networks: Linking micro- to macro-scales
journal, April 2020

  • Wunderling, Nico; Stumpf, Benedikt; Krönke, Jonathan
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 30, Issue 4
  • DOI: 10.1063/1.5142827

The role of fire in the boreal carbon budget
journal, December 2000


SPM - Summary for Policymakers
journal, May 2022


Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)
journal, November 2012


Carbon loss from an unprecedented Arctic tundra wildfire
journal, July 2011

  • Mack, Michelle C.; Bret-Harte, M. Syndonia; Hollingsworth, Teresa N.
  • Nature, Vol. 475, Issue 7357
  • DOI: 10.1038/nature10283

Predicting yields of short-rotation hybrid poplar ( Populus spp.) for the United States through model–data synthesis
journal, June 2013

  • Wang, Dan; LeBauer, David; Dietze, Michael
  • Ecological Applications, Vol. 23, Issue 4
  • DOI: 10.1890/12-0854.1

Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s
journal, January 2023

  • Stavros, E. Natasha; Chrone, Jon; Cawse‐Nicholson, Kerry
  • Journal of Geophysical Research: Biogeosciences, Vol. 128, Issue 1
  • DOI: 10.1029/2021JG006471

The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium
journal, February 2018


The Contribution from Methane to the Permafrost Carbon Feedback
journal, February 2017

  • Nzotungicimpaye, Claude-Michel; Zickfeld, Kirsten
  • Current Climate Change Reports, Vol. 3, Issue 1
  • DOI: 10.1007/s40641-017-0054-1

Rapid Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in the Siberian Lowland Tundra
journal, July 2020

  • Magnússon, Rúna Í.; Limpens, Juul; Huissteden, Jacobus
  • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 7
  • DOI: 10.1029/2019JG005618

Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal Experiment
journal, June 2021

  • Meunier, Félicien; van der Heijden, Geertje M. F.; Schnitzer, Stefan A.
  • Frontiers in Forests and Global Change, Vol. 4
  • DOI: 10.3389/ffgc.2021.663291

Facilitating feedbacks between field measurements and ecosystem models
journal, May 2013

  • LeBauer, David S.; Wang, Dan; Richter, Katherine T.
  • Ecological Monographs, Vol. 83, Issue 2
  • DOI: 10.1890/12-0137.1

Within-Stand Nutrient Cycling in Arctic and Boreal Wetlands
journal, October 1999


Arctic browning: extreme events and trends reversing arctic greening
journal, April 2016

  • Phoenix, Gareth K.; Bjerke, Jarle W.
  • Global Change Biology, Vol. 22, Issue 9
  • DOI: 10.1111/gcb.13261

What Limits Predictive Certainty of Long‐Term Carbon Uptake?
journal, December 2018

  • Raczka, Brett; Dietze, Michael C.; Serbin, Shawn P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 12
  • DOI: 10.1029/2018JG004504

Matplotlib: A 2D Graphics Environment
journal, January 2007


Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis
journal, January 2011

  • Dietze, Michael C.; Vargas, Rodrigo; Richardson, Andrew D.
  • Journal of Geophysical Research, Vol. 116, Issue G4
  • DOI: 10.1029/2011JG001661

Permafrost carbon feedbacks threaten global climate goals
journal, May 2021

  • Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 21
  • DOI: 10.1073/pnas.2100163118

Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling
journal, May 2011


Structure and function of the feed-forward loop network motif
journal, October 2003

  • Mangan, S.; Alon, U.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 21
  • DOI: 10.1073/pnas.2133841100

The Deciduous Forest - Boreal Forest Ecotone
journal, July 2010


Network motifs and their origins
journal, April 2019


Carbon cycle uncertainty in the Alaskan Arctic
journal, January 2014


Reducing model uncertainty of climate change impacts on high latitude carbon assimilation
journal, November 2021

  • Rogers, Alistair; Serbin, Shawn P.; Way, Danielle A.
  • Global Change Biology, Vol. 28, Issue 4
  • DOI: 10.1111/gcb.15958