DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries

Abstract

Understanding the fundamental redox reactions and processes that occur in lithium–air and, more generally, metal–air batteries is important to the progress of this promising energy-storage technology. Knowledge of the chemistry of the peroxide dianion, O22–, is especially crucial, as the dianion is at the nexus of the charge/discharge cycle of lithium–air batteries. The intrinsic electron transfer properties and redox chemistry of peroxide dianion are poorly defined because it is difficult to isolate the dianion free of protons and metal ions. We review the results of (i) the electron transfer kinetics and (ii) the redox reaction chemistry of isolated peroxide dianion encapsulated within the cavity of a hexacarboxamide cryptand. With regard to the former, electron transfer kinetics measurements provide fundamental Marcus parameters that will be useful for models that seek to disentangle the precise contributions of Li+ ion-coupled electron transfer, electron transfer across the Li2O2 solid particle interface, and charge hopping among Li2O2 particles. With regard to the latter, an underappreciated chemistry of peroxide dianion with CO2 produces peroxymonocarbonate (OOCO22–) and peroxydicarbonate (O2COOCO22–). An autocatalytic cycle will lead to oxidative degradation of traditional organic electrolytes and other vulnerable cell components employed in lithium–air batteries. Furthermore, this peroxycarbonate-derived chemistry, in addition tomore » more commonly recognized solution-based oxidation chemistry, will need to be mitigated to realize the long-term cyclability of rechargeable lithium–air batteries.« less

Authors:
 [1]; ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Harvard University, Cambridge, MA (United States)
  2. Universidad Autónoma del Estado de Morelos, Morelos (Mexico)
  3. Massachusetts Institute of Technology, Cambridge, MA (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
OSTI Identifier:
1989832
Grant/Contract Number:  
SC0021639
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: 9; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries; Charge transfer; Ethers; Macrocyclic compounds; Oxides

Citation Formats

Nava, Matthew, Thorarinsdottir, Agnes E., Lopez, Nazario, Cummins, Christopher C., and Nocera, Daniel G. Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries. United States: N. p., 2022. Web. doi:10.1021/acs.chemmater.2c00282.
Nava, Matthew, Thorarinsdottir, Agnes E., Lopez, Nazario, Cummins, Christopher C., & Nocera, Daniel G. Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries. United States. https://doi.org/10.1021/acs.chemmater.2c00282
Nava, Matthew, Thorarinsdottir, Agnes E., Lopez, Nazario, Cummins, Christopher C., and Nocera, Daniel G. Thu . "Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries". United States. https://doi.org/10.1021/acs.chemmater.2c00282. https://www.osti.gov/servlets/purl/1989832.
@article{osti_1989832,
title = {Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries},
author = {Nava, Matthew and Thorarinsdottir, Agnes E. and Lopez, Nazario and Cummins, Christopher C. and Nocera, Daniel G.},
abstractNote = {Understanding the fundamental redox reactions and processes that occur in lithium–air and, more generally, metal–air batteries is important to the progress of this promising energy-storage technology. Knowledge of the chemistry of the peroxide dianion, O22–, is especially crucial, as the dianion is at the nexus of the charge/discharge cycle of lithium–air batteries. The intrinsic electron transfer properties and redox chemistry of peroxide dianion are poorly defined because it is difficult to isolate the dianion free of protons and metal ions. We review the results of (i) the electron transfer kinetics and (ii) the redox reaction chemistry of isolated peroxide dianion encapsulated within the cavity of a hexacarboxamide cryptand. With regard to the former, electron transfer kinetics measurements provide fundamental Marcus parameters that will be useful for models that seek to disentangle the precise contributions of Li+ ion-coupled electron transfer, electron transfer across the Li2O2 solid particle interface, and charge hopping among Li2O2 particles. With regard to the latter, an underappreciated chemistry of peroxide dianion with CO2 produces peroxymonocarbonate (OOCO22–) and peroxydicarbonate (O2COOCO22–). An autocatalytic cycle will lead to oxidative degradation of traditional organic electrolytes and other vulnerable cell components employed in lithium–air batteries. Furthermore, this peroxycarbonate-derived chemistry, in addition to more commonly recognized solution-based oxidation chemistry, will need to be mitigated to realize the long-term cyclability of rechargeable lithium–air batteries.},
doi = {10.1021/acs.chemmater.2c00282},
journal = {Chemistry of Materials},
number = 9,
volume = 34,
place = {United States},
year = {Thu Apr 21 00:00:00 EDT 2022},
month = {Thu Apr 21 00:00:00 EDT 2022}
}

Works referenced in this record:

Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides
journal, December 2018

  • Costentin, Cyrille; Nocera, Daniel G.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 3
  • DOI: 10.1021/acs.jpcc.8b10948

Critical CO2 Concentration for Practical Lithium–Air Batteries
journal, May 2021

  • Wang, Tianjie; Pan, Xiaoyan; Chen, Juan
  • The Journal of Physical Chemistry Letters, Vol. 12, Issue 20
  • DOI: 10.1021/acs.jpclett.1c01054

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Mechanism and performance of lithium–oxygen batteries – a perspective
journal, January 2017

  • Mahne, Nika; Fontaine, Olivier; Thotiyl, Musthafa Ottakam
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/C7SC02519J

Anion-Receptor Mediated Oxidation of Carbon Monoxide to Carbonate by Peroxide Dianion
journal, November 2015

  • Nava, Matthew; Lopez, Nazario; Müller, Peter
  • Journal of the American Chemical Society, Vol. 137, Issue 46
  • DOI: 10.1021/jacs.5b08495

Effects of media and electrode materials on the electrochemical reduction of dioxygen
journal, September 1982

  • Sawyer, Donald T.; Chiericato, Glaico.; Angelis, Charles T.
  • Analytical Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ac00248a014

Electron transfers in chemistry and biology
journal, August 1985

  • Marcus, R. A.; Sutin, Norman
  • Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, Vol. 811, Issue 3
  • DOI: 10.1016/0304-4173(85)90014-X

Mechanism for Singlet Oxygen Production in Li-Ion and Metal–Air Batteries
journal, May 2020


Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Electrolytes for Rechargeable Lithium–Air Batteries
journal, February 2020

  • Lai, Jingning; Xing, Yi; Chen, Nan
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201903459

Carbonate radical anion — Thermochemistry
journal, December 2006

  • Armstrong, D. A.; Waltz, W. L.; Rauk, A.
  • Canadian Journal of Chemistry, Vol. 84, Issue 12
  • DOI: 10.1139/v06-168

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

Deciphering the Enigma of Li2CO3 Oxidation Using a Solid-State Li–Air Battery Configuration
journal, March 2021

  • Jiang, Fangling; Ma, Lipo; Sun, Jiyang
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 12
  • DOI: 10.1021/acsami.1c01770

Identification of a Discrete Peroxide Dianion, O22−, in a Two Sodium–(1,6-Anhydro-β-maltose)2–Peroxide Complex
journal, February 2010

  • Kato, Takayuki; Fujimoto, Takashi; Tsutsui, Ayumi
  • Chemistry Letters, Vol. 39, Issue 2
  • DOI: 10.1246/cl.2010.136

Implications of CO 2 Contamination in Rechargeable Nonaqueous Li–O 2 Batteries
journal, December 2012

  • Gowda, S. R.; Brunet, A.; Wallraff, G. M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1021/jz301902h

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Electroreduction of oxygen in aprotic media
journal, July 1995


Ultrafast Photoinduced Electron Transfer from Peroxide Dianion
journal, December 2014

  • Anderson, Bryce L.; Maher, Andrew G.; Nava, Matthew
  • The Journal of Physical Chemistry B, Vol. 119, Issue 24
  • DOI: 10.1021/jp5110505

Electron and Ion Transport In Li 2 O 2
journal, May 2013

  • Gerbig, Oliver; Merkle, Rotraut; Maier, Joachim
  • Advanced Materials, Vol. 25, Issue 22
  • DOI: 10.1002/adma.201300264

Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
journal, April 2016

  • Wandt, Johannes; Jakes, Peter; Granwehr, Josef
  • Angewandte Chemie, Vol. 128, Issue 24
  • DOI: 10.1002/ange.201602142

Charge Transport in Alkali-Metal Superoxides: A Systematic First-Principles Study
journal, October 2019


Diffusion of Molecules in Ionic Liquids/Organic Solvent Mixtures. Example of the Reversible Reduction of O2 to Superoxide
journal, January 2009

  • Zigah, Dodzi; Wang, Aifang; Lagrost, Corinne
  • The Journal of Physical Chemistry B, Vol. 113, Issue 7
  • DOI: 10.1021/jp8095314

An NMR Investigation of the Effect of Hydrogen Bonding on the Rates of Rotation about the C−N Bonds in Urea and Thiourea
journal, January 1996

  • Haushalter, Karl A.; Lau, Janice; Roberts, John D.
  • Journal of the American Chemical Society, Vol. 118, Issue 37
  • DOI: 10.1021/ja961380k

A reversible lithium–CO 2 battery with Ru nanoparticles as a cathode catalyst
journal, January 2017

  • Yang, Sixie; Qiao, Yu; He, Ping
  • Energy & Environmental Science, Vol. 10, Issue 4
  • DOI: 10.1039/C6EE03770D

Experimental and Computational Analysis of the Solvent-Dependent O 2 /Li + -O 2 Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries
journal, January 2016

  • Kwabi, David G.; Bryantsev, Vyacheslav S.; Batcho, Thomas P.
  • Angewandte Chemie International Edition, Vol. 55, Issue 9
  • DOI: 10.1002/anie.201509143

Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage
journal, October 2017


LiOH Formation from Lithium Peroxide Clusters and the Role of Iodide Additive
journal, April 2020

  • Torres, Ana E.; Ramos, Estrella; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 19
  • DOI: 10.1021/acs.jpcc.9b11980

Structural Basis for Activation of Class Ib Ribonucleotide Reductase
journal, August 2010


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

How super is superoxide?
journal, December 1981

  • Sawyer, Donald T.; Valentine, Joan S.
  • Accounts of Chemical Research, Vol. 14, Issue 12
  • DOI: 10.1021/ar00072a005

The Influence of Water and Protons on Li 2 O 2 Crystal Growth in Aprotic Li-O 2 Cells
journal, January 2015

  • Schwenke, K. Uta; Metzger, Michael; Restle, Tassilo
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0201504jes

Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen
journal, April 2018

  • Mahne, Nika; Renfrew, Sara E.; McCloskey, Bryan D.
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201802277

Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells
journal, January 2013

  • Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K. Uta
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 27
  • DOI: 10.1039/c3cp51112j

On the incompatibility of lithium–O 2 battery technology with CO 2
journal, January 2017

  • Zhang, Shiyu; Nava, Matthew J.; Chow, Gary K.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC01230F

Chemical vs Electrochemical Formation of Li 2 CO 3 as a Discharge Product in Li–O 2 /CO 2 Batteries by Controlling the Superoxide Intermediate
journal, December 2016

  • Yin, Wei; Grimaud, Alexis; Lepoivre, Florent
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 1
  • DOI: 10.1021/acs.jpclett.6b02610

Theoretical Evidence for Low Charging Overpotentials of Superoxide Discharge Products in Metal–Oxygen Batteries
journal, December 2015


State of the Climate in 2019
journal, August 2020


Cesium carbonate: A powerful inorganic base in organic synthesis
journal, February 1999


New Polyamide Cryptand for Anion Binding
journal, July 2003

  • Kang, Sung Ok; Llinares, José M.; Powell, Douglas
  • Journal of the American Chemical Society, Vol. 125, Issue 34
  • DOI: 10.1021/ja034969+

Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology
journal, May 2002

  • Augusto, Ohara; Bonini, Marcelo G.; Amanso, Angélica M.
  • Free Radical Biology and Medicine, Vol. 32, Issue 9
  • DOI: 10.1016/S0891-5849(02)00786-4

Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
journal, March 2017


First-Principles Study of the Charge Transport Mechanisms in Lithium Superoxide
journal, February 2017


Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions
journal, January 1991

  • Huie, Robert E.; Clifton, Carol L.; Neta, Pedatsur
  • International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, Vol. 38, Issue 5
  • DOI: 10.1016/1359-0197(91)90065-A

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries
journal, July 2014


Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory
journal, July 2021


Li 2 CO 3 -free Li–O 2 /CO 2 battery with peroxide discharge product
journal, January 2018

  • Qiao, Yu; Yi, Jin; Guo, Shaohua
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C7EE03341A

The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries
journal, November 2014

  • Adams, Brian D.; Black, Robert; Radtke, Claudio
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505337p

A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries
journal, January 2015

  • Gunasekara, Iromie; Mukerjee, Sanjeev; Plichta, Edward J.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0841506jes

Rechargeable Li 2 O 2 Electrode for Lithium Batteries
journal, February 2006

  • Ogasawara, Takeshi; Débart, Aurélie; Holzapfel, Michael
  • Journal of the American Chemical Society, Vol. 128, Issue 4
  • DOI: 10.1021/ja056811q

Nature of Li 2 O 2 Oxidation in a Li–O 2 Battery Revealed by Operando X-ray Diffraction
journal, November 2014

  • Ganapathy, Swapna; Adams, Brian D.; Stenou, Georgiana
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508794r

Catalytic Behavior of Lithium Nitrate in Li-O 2 Cells
journal, July 2015

  • Sharon, Daniel; Hirsberg, Daniel; Afri, Michal
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04145

Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries
journal, February 2020


Variable character of O--O and M--O bonding in side-on ( 2) 1:1 metal complexes of O2
journal, March 2003

  • Cramer, C. J.; Tolman, W. B.; Theopold, K. H.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 7
  • DOI: 10.1073/pnas.0535926100

Charge Transport Properties of Lithium Superoxide in Li–O 2 Batteries
journal, November 2020

  • Plunkett, Samuel T.; Wang, Hsien-Hau; Park, Se Hwan
  • ACS Applied Energy Materials, Vol. 3, Issue 12
  • DOI: 10.1021/acsaem.0c02495

Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by 5,5-Dimethyl-1-Pyrroline N -Oxide (DMPO). 2. Carbonate Radical Anion
journal, December 2006

  • Villamena, Frederick A.; Locigno, Edward J.; Rockenbauer, Antal
  • The Journal of Physical Chemistry A, Vol. 111, Issue 2
  • DOI: 10.1021/jp065692d

A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
journal, January 1996

  • Abraham, K. M.; Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
  • DOI: 10.1149/1.1836378

Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect
journal, July 2016

  • Yao, Xiahui; Dong, Qi; Cheng, Qingmei
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201601783

Synthetic oxygen carriers related to biological systems
journal, April 1979

  • Jones, Robert D.; Summerville, David A.; Basolo, Fred.
  • Chemical Reviews, Vol. 79, Issue 2
  • DOI: 10.1021/cr60318a002

Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium–Oxygen Batteries
journal, March 2016

  • Kwabi, David G.; Tułodziecki, Michał; Pour, Nir
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 7
  • DOI: 10.1021/acs.jpclett.6b00323

Nucleophilic oxygenation of carbon dioxide by superoxide ion in aprotic media to form the peroxydicarbonate(2-) ion species
journal, August 1984

  • Roberts, Julian L.; Calderwood, Thomas S.; Sawyer, Donald T.
  • Journal of the American Chemical Society, Vol. 106, Issue 17
  • DOI: 10.1021/ja00329a003

Li–O 2 Battery Degradation by Lithium Peroxide (Li 2 O 2 ): A Model Study
journal, December 2012

  • Younesi, Reza; Hahlin, Maria; Björefors, Fredrik
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm303226g

Mechanism of Sulfide Oxidations by Peroxymonocarbonate
journal, May 2001

  • Bennett, Deon A.; Yao, Huirong; Richardson, David E.
  • Inorganic Chemistry, Vol. 40, Issue 13
  • DOI: 10.1021/ic000910h

Toward a Lithium–“Air” Battery: The Effect of CO 2 on the Chemistry of a Lithium–Oxygen Cell
journal, June 2013

  • Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja4016765

Thermodynamic Data for the Association of Phenol with a Series of Amides
journal, July 1962

  • Joesten, Melvin D.; Drago, Russell S.
  • Journal of the American Chemical Society, Vol. 84, Issue 14
  • DOI: 10.1021/ja00873a010

Materials challenges in rechargeable lithium-air batteries
journal, May 2014

  • Kwabi, D. G.; Ortiz-Vitoriano, N.; Freunberger, S. A.
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.87

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion
journal, November 2010

  • Surmeli, N. Basak; Litterman, Nadia K.; Miller, Anne-Frances
  • Journal of the American Chemical Society, Vol. 132, Issue 48
  • DOI: 10.1021/ja105684w

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Kinetics and mechanism of the oxidation of 2-mercaptoethanol by hydrogen peroxide in aqueous solution
journal, November 1985

  • Leung, Ping Sang K.; Hoffmann, Michael R.
  • The Journal of Physical Chemistry, Vol. 89, Issue 24
  • DOI: 10.1021/j100270a029

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Reversible Reduction of Oxygen to Peroxide Facilitated by Molecular Recognition
journal, January 2012


Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Superoxide reactions with (isonicotinamide)pentaammineruthenium(II) and -(III)
journal, December 1980

  • Stanbury, David M.; Mulac, William A.; Sullivan, James C.
  • Inorganic Chemistry, Vol. 19, Issue 12
  • DOI: 10.1021/ic50214a032

The potential diagram for oxygen at pH 7
journal, July 1988


Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

Solvent Degradation in Nonaqueous Li-O 2 Batteries: Oxidative Stability versus H-Abstraction
journal, June 2014

  • Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501154v