DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation

Abstract

Conventional lithium ion battery separators are microporous polyolefin membranes that play a passive role in the electrochemical cell. Next generation separators should offer significant performance enhancements, while being fabricated through facile, low cost approaches with the ability to readily tune physicochemical properties. This study presents a single-step manufacturing technique based on UV-initiated polymerization-induced phase separation (PIPS), wherein microporous separators are fabricated from multifunctional monomers and ethylene carbonate (EC), which functions as both the pore-forming agent (porogen) and electrolyte component in the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to ethylene carbonate, monolithic microporous membranes are readily prepared with 25 μm thickness and pore sizes and porosities ranging from 6.8 to 22 nm and 15.4% to 38.5%, respectively. With 38.5% apparent porosity and an average pore size of 22 nm, the poly(1,4-butanediol diacrylate) (pBDDA) separator takes up 127% liquid electrolyte, resulting in an ionic conductivity of 1.98 mS cm–1, which is greater than in conventional Celgard 2500. Lithium ion battery half cells consisting of LiNi0.5Mn0.3Co0.2O2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mA h g–1 and a capacity retention of 98.4% over 100 cycles –more » comparable to cells using state-of-the-art separators. Moreover, similar discharge capacities were achieved in rate performance tests due to the high ionic conductivity and electrolyte uptake of the film. Finally, the pBDDA separators were shown to be thermally stable to 374 °C, lack low temperature thermal transitions that can compromise cell safety, and exhibit no thermal shrinkage up to 150 °C.« less

Authors:
 [1]; ORCiD logo [1]
  1. Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); National Science Foundation (NSF); USDOE
OSTI Identifier:
1982228
Alternate Identifier(s):
OSTI ID: 1863102
Grant/Contract Number:  
AC02-06CH11357; 1845805
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 10; Journal Issue: 19; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Energy & Fuels; Materials Science

Citation Formats

Manly, Alexander J., and Tenhaeff, Wyatt E. One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation. United States: N. p., 2022. Web. doi:10.1039/d1ta10730e.
Manly, Alexander J., & Tenhaeff, Wyatt E. One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation. United States. https://doi.org/10.1039/d1ta10730e
Manly, Alexander J., and Tenhaeff, Wyatt E. Fri . "One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation". United States. https://doi.org/10.1039/d1ta10730e. https://www.osti.gov/servlets/purl/1982228.
@article{osti_1982228,
title = {One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation},
author = {Manly, Alexander J. and Tenhaeff, Wyatt E.},
abstractNote = {Conventional lithium ion battery separators are microporous polyolefin membranes that play a passive role in the electrochemical cell. Next generation separators should offer significant performance enhancements, while being fabricated through facile, low cost approaches with the ability to readily tune physicochemical properties. This study presents a single-step manufacturing technique based on UV-initiated polymerization-induced phase separation (PIPS), wherein microporous separators are fabricated from multifunctional monomers and ethylene carbonate (EC), which functions as both the pore-forming agent (porogen) and electrolyte component in the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to ethylene carbonate, monolithic microporous membranes are readily prepared with 25 μm thickness and pore sizes and porosities ranging from 6.8 to 22 nm and 15.4% to 38.5%, respectively. With 38.5% apparent porosity and an average pore size of 22 nm, the poly(1,4-butanediol diacrylate) (pBDDA) separator takes up 127% liquid electrolyte, resulting in an ionic conductivity of 1.98 mS cm–1, which is greater than in conventional Celgard 2500. Lithium ion battery half cells consisting of LiNi0.5Mn0.3Co0.2O2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mA h g–1 and a capacity retention of 98.4% over 100 cycles – comparable to cells using state-of-the-art separators. Moreover, similar discharge capacities were achieved in rate performance tests due to the high ionic conductivity and electrolyte uptake of the film. Finally, the pBDDA separators were shown to be thermally stable to 374 °C, lack low temperature thermal transitions that can compromise cell safety, and exhibit no thermal shrinkage up to 150 °C.},
doi = {10.1039/d1ta10730e},
journal = {Journal of Materials Chemistry. A},
number = 19,
volume = 10,
place = {United States},
year = {Fri Apr 08 00:00:00 EDT 2022},
month = {Fri Apr 08 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Fig. 1 Fig. 1 : Outline of the fabrication of a porous monolith using monomer 1,4-butanediol diacrylate (BDDA) and porogen ethylene carbonate (EC). UV polymerization induces a microphase separation and results in a porous film that is incorporated into an electrochemical cell.

Save / Share:

Works referenced in this record:

Dendrite-separator interactions in lithium-based batteries
journal, February 2015


A Core-Shell Structured Polysulfonamide-Based Composite Nonwoven Towards High Power Lithium Ion Battery Separator
journal, January 2013

  • Zhou, Xinhong; Yue, Liping; Zhang, Jianjun
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.003309jes

Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries
journal, August 2017

  • Xiao, Wei; Zhang, Kaiyue; Liu, Jianguo
  • Journal of Materials Science: Materials in Electronics, Vol. 28, Issue 23
  • DOI: 10.1007/s10854-017-7687-7

Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries
journal, February 2017

  • Li, Dan; Shi, Dingqin; Xia, Yonggao
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 10
  • DOI: 10.1021/acsami.6b16316

All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator
journal, August 2016

  • Lin, Dingchang; Zhuo, Denys; Liu, Yayuan
  • Journal of the American Chemical Society, Vol. 138, Issue 34
  • DOI: 10.1021/jacs.6b06324

Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries
journal, December 2017


An Efficient Route to Polymeric Electrolyte Membranes with Interparticle Chain Microstructure Toward High-Temperature Lithium-Ion Batteries
journal, April 2017

  • Ye, Luhan; Shi, Xinyi; Zhang, Zuoxiang
  • Advanced Materials Interfaces, Vol. 4, Issue 11
  • DOI: 10.1002/admi.201601236

Tailor-made pore controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator
journal, February 2016


Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries
journal, October 2016


High‐Performance Al 2 O 3 /PAALi Composite Separator Prepared by Water‐Based Slurry for High‐Power Density Lithium‐Based Battery
journal, December 2020

  • Xu, Rong; Sheng, Lei; Gong, Hao
  • Advanced Engineering Materials, Vol. 23, Issue 3
  • DOI: 10.1002/adem.202001009

Performance and Life Degradation Characteristics Analysis of NCM LIB for BESS
journal, December 2018


Understanding and applying coulombic efficiency in lithium metal batteries
journal, June 2020


A comparison of the thermal degradation behaviour of ethylene-ethyl acrylate copolymer, low density polyethylene and poly(ethyl acrylate)
journal, January 1995


Battery Separators
journal, October 2004

  • Arora, Pankaj; Zhang, Zhengming (John)
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020738u

Phase-separation mechanism and corresponding final morphologies of thermoset blends based on unsaturated polyester and low-molar-weight saturated polyester
journal, January 2005

  • Boyard, N.; Vayer, M.; Sinturel, Ch.
  • Journal of Applied Polymer Science, Vol. 95, Issue 6
  • DOI: 10.1002/app.21392

Improving Stability of Li-Ion Batteries by Means of Transition Metal Ions Trapping Separators
journal, January 2016

  • Banerjee, Anjan; Ziv, Baruch; Shilina, Yuliya
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0081607jes

Wetting transitions on textured hydrophilic surfaces
journal, April 2008


Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments
journal, April 2015


Directions in secondary lithium battery research and development
journal, June 1993


Facilitated Ion Diffusion in Multiscale Porous Particles: Application in Battery Separators
journal, February 2015

  • Kim, Young Bum; Tran-Phu, Thanh; Kim, Min
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 8
  • DOI: 10.1021/am506797d

In situ study of photopolymerization by fourier transform infrared spectroscopy
journal, April 1991

  • Udagawa, Atsushi; Sakurai, Fumio; Takahashi, Tatsuo
  • Journal of Applied Polymer Science, Vol. 42, Issue 7
  • DOI: 10.1002/app.1991.070420707

On the Decomposition of Carbonate-Based Lithium-Ion Battery Electrolytes Studied Using Operando Infrared Spectroscopy
journal, January 2018

  • Saqib, Najmus; Ganim, Chase M.; Shelton, Austin E.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.1051816jes

High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation
journal, December 2013

  • Schulze, Morgan W.; McIntosh, Lucas D.; Hillmyer, Marc A.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4034818

Porous polyetherimide membranes with tunable morphology for lithium-ion battery
journal, November 2018


Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether ether ketone)
journal, October 2017


Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization
journal, September 2019


A review of recent developments in membrane separators for rechargeable lithium-ion batteries
journal, January 2014

  • Lee, Hun; Yanilmaz, Meltem; Toprakci, Ozan
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01432D

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Thermotolerant separators for safe lithium-ion batteries under extreme conditions
journal, January 2020

  • Li, Yaqian; Yu, Le; Hu, Weiren
  • Journal of Materials Chemistry A, Vol. 8, Issue 39
  • DOI: 10.1039/D0TA07511F

Investigation of phase separation mechanisms of thermoset polymer blends by time-resolved SAXS
journal, June 2005


Before Li Ion Batteries
journal, November 2018


Characterization and performance evaluation of lithium-ion battery separators
journal, December 2018


Materials for lithium-ion battery safety
journal, June 2018


Horizons for Li-Ion Batteries Relevant to Electro-Mobility: High-Specific-Energy Cathodes and Chemically Active Separators
journal, July 2018

  • Susai, Francis Amalraj; Sclar, Hadar; Shilina, Yuliya
  • Advanced Materials, Vol. 30, Issue 41
  • DOI: 10.1002/adma.201801348

Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations
journal, September 2007

  • Nakanishi, Kazuki; Tanaka, Nobuo
  • Accounts of Chemical Research, Vol. 40, Issue 9
  • DOI: 10.1021/ar600034p

Enhanced cycle stability of LiCoPO 4 by using three-dimensionally ordered macroporous polyimide separator
journal, May 2017


Lithium-ion batteries with high charge rate capacity: Influence of the porous separator
journal, October 2007


Macroporous copolymer networks
journal, August 2000


Batteries and fuel cells for emerging electric vehicle markets
journal, April 2018


Evidence for short-range orientation effects in dipolar aprotic liquids from vibrational spectroscopy. Part 2.—Carbonyl compounds
journal, January 1974

  • Fini, Giancarlo; Mirone, Paolo
  • J. Chem. Soc., Faraday Trans. 2, Vol. 70, Issue 0
  • DOI: 10.1039/F29747001776

Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries
journal, January 2016


Bicontinuous Electrolytes via Thermally Initiated Polymerization for Structural Lithium Ion Batteries
journal, May 2019

  • Schneider, Lynn M.; Ihrner, Niklas; Zenkert, Dan
  • ACS Applied Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1021/acsaem.9b00563

Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries
journal, December 2017


Current status and challenges for automotive battery production technologies
journal, April 2018


A review of advanced separators for rechargeable batteries
journal, October 2021


Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy
journal, January 2016

  • Landesfeind, Johannes; Hattendorff, Johannes; Ehrl, Andreas
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1141607jes

Polyester Separators for Lithium-Ion Cells: Improving Thermal Stability and Abuse Tolerance
journal, December 2012

  • Orendorff, Christopher J.; Lambert, Timothy N.; Chavez, Carlos A.
  • Advanced Energy Materials, Vol. 3, Issue 3
  • DOI: 10.1002/aenm.201200292

Evolution of Morphology, Modulus, and Conductivity in Polymer Electrolytes Prepared via Polymerization-Induced Phase Separation
journal, February 2015

  • McIntosh, Lucas D.; Schulze, Morgan W.; Irwin, Matthew T.
  • Macromolecules, Vol. 48, Issue 5
  • DOI: 10.1021/ma502281k

Polymerization-Induced Phase Separation. 1. Conversion−Phase Diagrams
journal, January 1996

  • Boots, H. M. J.; Kloosterboer, J. G.; Serbutoviez, C.
  • Macromolecules, Vol. 29, Issue 24
  • DOI: 10.1021/ma960292h

Creating ionic pathways in solid-state polymer electrolyte by using PVA-coated carbon nanofibers
journal, May 2021


Structural lithium ion battery electrolytes via reaction induced phase-separation
journal, January 2017

  • Ihrner, N.; Johannisson, W.; Sieland, F.
  • Journal of Materials Chemistry A, Vol. 5, Issue 48
  • DOI: 10.1039/C7TA04684G

Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes
journal, November 2019


Well‐controlled 3D skeletal epoxy‐based monoliths obtained by polymerization induced phase separation
journal, April 2008

  • Tsujioka, Norio; Ishizuka, Norio; Tanaka, Nobuo
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 46, Issue 10
  • DOI: 10.1002/pola.22665

Numerical simulation of porous networks in relation to battery electrodes and separators
journal, July 2003

  • Patel, Kamalnayan Kantilal; Paulsen, Jens M.; Desilvestro, Johann
  • Journal of Power Sources, Vol. 122, Issue 2
  • DOI: 10.1016/S0378-7753(03)00399-9

Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion
journal, January 2015

  • Sousa, R. E.; Kundu, Manab; Gören, A.
  • RSC Advances, Vol. 5, Issue 110
  • DOI: 10.1039/C5RA19335D

A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium ion batteries
journal, January 2017

  • Liang, Naiqiang; Fang, Jianhua; Guo, Xiaoxia
  • Journal of Materials Chemistry A, Vol. 5, Issue 29
  • DOI: 10.1039/C7TA03554C

Poly(Vinylidene Difluoride) Soft Dendritic Colloids as Li-Ion Battery Separators
journal, February 2021

  • Luiso, Salvatore; Williams, Austin H.; Petrecca, Michael J.
  • Journal of The Electrochemical Society, Vol. 168, Issue 2
  • DOI: 10.1149/1945-7111/abdfa7

Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries
journal, October 2016

  • Liang, Hong-qing; Wan, Ling-shu; Xu, Zhi-kang
  • Chinese Journal of Polymer Science, Vol. 34, Issue 12
  • DOI: 10.1007/s10118-016-1860-y

Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries
journal, January 2017

  • Sakakibara, Keita; Kagata, Hideki; Ishizuka, Norio
  • Journal of Materials Chemistry A, Vol. 5, Issue 15
  • DOI: 10.1039/C6TA09005B

Enabling High-Energy, High-Voltage Lithium-Ion Cells: Standardization of Coin-Cell Assembly, Electrochemical Testing, and Evaluation of Full Cells
journal, January 2016

  • Long, Brandon R.; Rinaldo, Steven G.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0691614jes

High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries
journal, October 2020

  • Tabani, Zaniar; Maghsoudi, Hafez; Fathollahi Zonouz, Abolfazl
  • Journal of Solid State Electrochemistry, Vol. 25, Issue 2
  • DOI: 10.1007/s10008-020-04842-5

Thermal stability of lithium-ion battery electrolytes
journal, June 2003


Progress in polymeric separators for lithium ion batteries
journal, January 2015

  • Zhang, Hong; Zhou, Ming-Yong; Lin, Chun-Er
  • RSC Advances, Vol. 5, Issue 109
  • DOI: 10.1039/C5RA14087K

Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales
journal, January 2011

  • Kim, Gi-Heon; Smith, Kandler; Lee, Kyu-Jin
  • Journal of The Electrochemical Society, Vol. 158, Issue 8
  • DOI: 10.1149/1.3597614

Thermal stability of LiPF6–EC:EMC electrolyte for lithium ion batteries
journal, July 2001


Effects of separator breakdown on abuse response of 18650 Li-ion cells
journal, December 2007


Review—Multifunctional Separators: A Promising Approach for Improving the Durability and Performance of Li-Ion Batteries
journal, January 2019

  • Banerjee, Anjan; Ziv, Baruch; Shilina, Yuliya
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0561903jes

Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery
journal, April 2016

  • Li, Jinglong; Tian, Wenting; Yan, Hongchen
  • Journal of Applied Polymer Science, Vol. 133, Issue 30
  • DOI: 10.1002/APP.43623

Microstructure and multifunctional properties of liquid + polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths
journal, July 2015

  • Gienger, Edwin B.; Nguyen, Phuong‐Anh T.; Chin, Wai
  • Journal of Applied Polymer Science, Vol. 132, Issue 42
  • DOI: 10.1002/app.42681

Modeling stresses in the separator of a pouch lithium-ion cell
journal, October 2011


Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations
journal, January 2011

  • Gerver, Rachel E.; Meyers, Jeremy P.
  • Journal of The Electrochemical Society, Vol. 158, Issue 7
  • DOI: 10.1149/1.3591799