DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase

Abstract

TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Weill Cornell Medicine, New York, NY (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Institutes of Health (NIH)
OSTI Identifier:
1982177
Grant/Contract Number:  
AC05-00OR22725; R01GM106717
Resource Type:
Accepted Manuscript
Journal Name:
Communications Biology
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2399-3642
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Life Sciences & Biomedicine - Other Topics; Science & Technology - Other Topics; Computational biophysics; Molecular modelling

Citation Formats

Khelashvili, George, Kots, Ekaterina, Cheng, Xiaolu, Levine, Michael V., and Weinstein, Harel. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. United States: N. p., 2022. Web. doi:10.1038/s42003-022-03930-8.
Khelashvili, George, Kots, Ekaterina, Cheng, Xiaolu, Levine, Michael V., & Weinstein, Harel. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. United States. https://doi.org/10.1038/s42003-022-03930-8
Khelashvili, George, Kots, Ekaterina, Cheng, Xiaolu, Levine, Michael V., and Weinstein, Harel. Mon . "The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase". United States. https://doi.org/10.1038/s42003-022-03930-8. https://www.osti.gov/servlets/purl/1982177.
@article{osti_1982177,
title = {The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase},
author = {Khelashvili, George and Kots, Ekaterina and Cheng, Xiaolu and Levine, Michael V. and Weinstein, Harel},
abstractNote = {TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.},
doi = {10.1038/s42003-022-03930-8},
journal = {Communications Biology},
number = 1,
volume = 5,
place = {United States},
year = {Mon Sep 19 00:00:00 EDT 2022},
month = {Mon Sep 19 00:00:00 EDT 2022}
}

Works referenced in this record:

Thermodynamic Coupling Function Analysis of Allosteric Mechanisms in the Human Dopamine Transporter
journal, January 2018

  • LeVine, Michael V.; Cuendet, Michel A.; Razavi, Asghar M.
  • Biophysical Journal, Vol. 114, Issue 1
  • DOI: 10.1016/j.bpj.2017.10.030

Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase
journal, August 2018


Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16
journal, October 2019


A note on two problems in connexion with graphs
journal, December 1959


Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins
journal, November 2019

  • Khelashvili, George; Cheng, Xiaolu; Falzone, Maria E.
  • Journal of Computational Chemistry, Vol. 41, Issue 6
  • DOI: 10.1002/jcc.26105

Gain of function of TMEM16E/ANO5 scrambling activity caused by a mutation associated with gnathodiaphyseal dysplasia
journal, November 2017

  • Di Zanni, Eleonora; Gradogna, Antonella; Scholz-Starke, Joachim
  • Cellular and Molecular Life Sciences, Vol. 75, Issue 9
  • DOI: 10.1007/s00018-017-2704-9

Identification of a lipid scrambling domain in ANO6/TMEM16F
journal, June 2015


The Allostery Landscape: Quantifying Thermodynamic Couplings in Biomolecular Systems
journal, November 2016

  • Cuendet, Michel A.; Weinstein, Harel; LeVine, Michael V.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 12
  • DOI: 10.1021/acs.jctc.6b00841

Scalable molecular dynamics on CPU and GPU architectures with NAMD
journal, July 2020

  • Phillips, James C.; Hardy, David J.; Maia, Julio D. C.
  • The Journal of Chemical Physics, Vol. 153, Issue 4
  • DOI: 10.1063/5.0014475

Robust Perron cluster analysis in conformation dynamics
journal, March 2005


Lifting the veils on TMEM16E function
journal, January 2019


Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases
journal, June 2018

  • Malvezzi, Mattia; Andra, Kiran K.; Pandey, Kalpana
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 30
  • DOI: 10.1073/pnas.1806721115

TMEM16 scramblases thin the membrane to enable lipid scrambling
journal, May 2022


ANO10 mutations cause ataxia and coenzyme Q10 deficiency
journal, September 2014

  • Balreira, Andrea; Boczonadi, Veronika; Barca, Emanuele
  • Journal of Neurology, Vol. 261, Issue 11
  • DOI: 10.1007/s00415-014-7476-7

MSMBuilder: Statistical Models for Biomolecular Dynamics
journal, January 2017

  • Harrigan, Matthew P.; Sultan, Mohammad M.; Hernández, Carlos X.
  • Biophysical Journal, Vol. 112, Issue 1
  • DOI: 10.1016/j.bpj.2016.10.042

The nhTMEM16 Scramblase Is Also a Nonselective Ion Channel
journal, November 2016

  • Lee, Byoung-Cheol; Menon, Anant K.; Accardi, Alessio
  • Biophysical Journal, Vol. 111, Issue 9
  • DOI: 10.1016/j.bpj.2016.09.032

Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome
journal, April 2011


Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling
journal, July 2019


Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling
journal, January 2017


Comparative Protein Structure Modeling Using MODELLER
journal, November 2016

  • Webb, Benjamin; Sali, Andrej
  • Current Protocols in Protein Science, Vol. 86, Issue 1
  • DOI: 10.1002/cpps.20

Defective membrane fusion and repair inAnoctamin5-deficient muscular dystrophy
journal, February 2016

  • Griffin, Danielle A.; Johnson, Ryan W.; Whitlock, Jarred M.
  • Human Molecular Genetics, Vol. 25, Issue 10
  • DOI: 10.1093/hmg/ddw063

Three novel ANO5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia
journal, February 2017

  • Jin, Lingling; Liu, Yi; Sun, Fanyue
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40935

MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale
journal, August 2011

  • Beauchamp, Kyle A.; Bowman, Gregory R.; Lane, Thomas J.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200463m

CHARMM36m: an improved force field for folded and intrinsically disordered proteins
journal, November 2016

  • Huang, Jing; Rauscher, Sarah; Nawrocki, Grzegorz
  • Nature Methods, Vol. 14, Issue 1
  • DOI: 10.1038/nmeth.4067

PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models
journal, October 2015

  • Scherer, Martin K.; Trendelkamp-Schroer, Benjamin; Paul, Fabian
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 11
  • DOI: 10.1021/acs.jctc.5b00743

A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death‐induced phospholipid scrambling
journal, December 2015

  • Brooks, M. B.; Catalfamo, J. L.; MacNguyen, R.
  • Journal of Thrombosis and Haemostasis, Vol. 13, Issue 12
  • DOI: 10.1111/jth.13157

Atomistic insight into lipid translocation by a TMEM16 scramblase
journal, November 2016

  • Bethel, Neville P.; Grabe, Michael
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 49
  • DOI: 10.1073/pnas.1607574113

Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor Opsin
journal, February 2018


CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes
journal, July 2009


An Additional Ca2+ Binding Site Allosterically Controls TMEM16A Activation
journal, December 2020


Characterization of the scrambling domain of the TMEM16 family
journal, May 2017

  • Gyobu, Sayuri; Ishihara, Kenji; Suzuki, Jun
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 24
  • DOI: 10.1073/pnas.1703391114

PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions
journal, December 2010

  • Olsson, Mats H. M.; Søndergaard, Chresten R.; Rostkowski, Michal
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 2
  • DOI: 10.1021/ct100578z

Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase
journal, January 2019

  • Falzone, Maria E.; Rheinberger, Jan; Lee, Byoung-Cheol
  • eLife, Vol. 8
  • DOI: 10.7554/eLife.43229

Lipid flippases and their biological functions
journal, November 2006


A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy
journal, December 2010


Anoctamins/TMEM16 Proteins: Chloride Channels Flirting with Lipids and Extracellular Vesicles
journal, February 2017


Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase
journal, September 2017


An inner activation gate controls TMEM16F phospholipid scrambling
journal, April 2019


X-ray structure of a calcium-activated TMEM16 lipid scramblase
journal, November 2014

  • Brunner, Janine D.; Lim, Novandy K.; Schenck, Stephan
  • Nature, Vol. 516, Issue 7530
  • DOI: 10.1038/nature13984

The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K
journal, September 2019

  • Bushell, Simon R.; Pike, Ashley C. W.; Falzone, Maria E.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11753-1

Autosomal Recessive Cerebellar Ataxia Type 3 Due toANO10Mutations
journal, October 2014


MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes
journal, July 2015


Macromolecular Modeling with Rosetta
journal, June 2008


Simulations of Anionic Lipid Membranes: Development of Interaction-Specific Ion Parameters and Validation Using NMR Data
journal, August 2013

  • Venable, Richard M.; Luo, Yun; Gawrisch, Klaus
  • The Journal of Physical Chemistry B, Vol. 117, Issue 35
  • DOI: 10.1021/jp401512z

Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms: TMEM16F variants
journal, July 2015

  • Scudieri, Paolo; Caci, Emanuela; Venturini, Arianna
  • The Journal of Physiology, Vol. 593, Issue 17
  • DOI: 10.1113/JP270691

Phospholipid Scrambling Activity by TMEM16E/Ano5: Opposite Effects of Mutations Causing Bone Dysplasia and Muscular Dystrophy
journal, February 2019

  • Di Zanni, Eleonora; Gradogna, Antonella; Picco, Cristiana
  • Biophysical Journal, Vol. 116, Issue 3
  • DOI: 10.1016/j.bpj.2018.11.1229

A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree
journal, October 2012

  • Marconi, Caterina; Brunamonti Binello, Paolo; Badiali, Giovanni
  • European Journal of Human Genetics, Vol. 21, Issue 6
  • DOI: 10.1038/ejhg.2012.224

ANO10 c.1150_1151del is a founder mutation causing autosomal recessive cerebellar ataxia in Roma/Gypsies
journal, October 2011

  • Chamova, Teodora; Florez, Laura; Guergueltcheva, Velina
  • Journal of Neurology, Vol. 259, Issue 5
  • DOI: 10.1007/s00415-011-6276-6

Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
journal, February 2019

  • Kalienkova, Valeria; Clerico Mosina, Vanessa; Bryner, Laura
  • eLife, Vol. 8
  • DOI: 10.7554/eLife.44364

Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F
journal, February 2019

  • Alvadia, Carolina; Lim, Novandy K.; Clerico Mosina, Vanessa
  • eLife, Vol. 8
  • DOI: 10.7554/eLife.44365

The permeation of potassium ions through the lipid scrambling path of the membrane protein nhTMEM16
journal, July 2022

  • Cheng, Xiaolu; Khelashvili, George; Weinstein, Harel
  • Frontiers in Molecular Biosciences, Vol. 9
  • DOI: 10.3389/fmolb.2022.903972

Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies
journal, February 2010

  • Bolduc, Véronique; Marlow, Gareth; Boycott, Kym M.
  • The American Journal of Human Genetics, Vol. 86, Issue 2
  • DOI: 10.1016/j.ajhg.2009.12.013

Targeted Next-Generation Sequencing of a 12.5 Mb Homozygous Region Reveals ANO10 Mutations in Patients with Autosomal-Recessive Cerebellar Ataxia
journal, December 2010

  • Vermeer, Sascha; Hoischen, Alexander; Meijer, Rowdy P. P.
  • The American Journal of Human Genetics, Vol. 87, Issue 6
  • DOI: 10.1016/j.ajhg.2010.10.015

Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel
journal, September 2013

  • Malvezzi, Mattia; Chalat, Madhavan; Janjusevic, Radmila
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3367

The Novel Gene Encoding a Putative Transmembrane Protein Is Mutated in Gnathodiaphyseal Dysplasia (GDD)
journal, June 2004

  • Tsutsumi, Satoshi; Kamata, Nobuyuki; Vokes, Tamara J.
  • The American Journal of Human Genetics, Vol. 74, Issue 6, p. 1255-1261
  • DOI: 10.1086/421527

Calcium-dependent phospholipid scrambling by TMEM16F
journal, November 2010

  • Suzuki, Jun; Umeda, Masato; Sims, Peter J.
  • Nature, Vol. 468, Issue 7325
  • DOI: 10.1038/nature09583

OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
journal, July 2017


Identification of slow molecular order parameters for Markov model construction
journal, July 2013

  • Pérez-Hernández, Guillermo; Paul, Fabian; Giorgino, Toni
  • The Journal of Chemical Physics, Vol. 139, Issue 1
  • DOI: 10.1063/1.4811489

A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter
journal, January 2017

  • Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40076

Known structures and unknown mechanisms of TMEM16 scramblases and channels
journal, June 2018

  • Falzone, Maria E.; Malvezzi, Mattia; Lee, Byoung-Cheol
  • The Journal of General Physiology, Vol. 150, Issue 7
  • DOI: 10.1085/jgp.201711957