DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths

Abstract

Here, we present a telecommunication-compatible bias-free photoconductive terahertz emitter composed of a bilayer InAs structure directly grown on a high-resistivity silicon substrate. The bilayer InAs structure includes p+-doped and undoped InAs layers, inducing a strong built-in electric field that enables terahertz generation without requiring any external bias voltage. A large-area plasmonic nanoantenna array is used to enhance and confine optical generation inside the photoconductive region with the highest built-in electric field, leading to the generation of a strong ultrafast photocurrent and broadband terahertz radiation. Thanks to a higher terahertz transmission through the silicon substrate and a shorter carrier lifetime in the InAs layers grown on silicon, higher signal-to-noise ratios are achieved at high terahertz frequencies compared with previously demonstrated bias-free terahertz emitters realized on GaAs. In addition to compatibility with silicon integrated optoelectronic platforms, the presented bias-free photoconductive emitter provides more than a 6 THz radiation bandwidth with more than 100 dB dynamic range when used in a terahertz time-domain spectroscopy system.

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1979118
Alternate Identifier(s):
OSTI ID: 1874402; OSTI ID: 2001453
Grant/Contract Number:  
SC0016925; N000141912052
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 26; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; physics

Citation Formats

Lu, Ping-Keng, Jiang, Xinghe, Zhao, Yifan, Turan, Deniz, and Jarrahi, Mona. Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths. United States: N. p., 2022. Web. doi:10.1063/5.0098340.
Lu, Ping-Keng, Jiang, Xinghe, Zhao, Yifan, Turan, Deniz, & Jarrahi, Mona. Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths. United States. https://doi.org/10.1063/5.0098340
Lu, Ping-Keng, Jiang, Xinghe, Zhao, Yifan, Turan, Deniz, and Jarrahi, Mona. Wed . "Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths". United States. https://doi.org/10.1063/5.0098340. https://www.osti.gov/servlets/purl/1979118.
@article{osti_1979118,
title = {Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths},
author = {Lu, Ping-Keng and Jiang, Xinghe and Zhao, Yifan and Turan, Deniz and Jarrahi, Mona},
abstractNote = {Here, we present a telecommunication-compatible bias-free photoconductive terahertz emitter composed of a bilayer InAs structure directly grown on a high-resistivity silicon substrate. The bilayer InAs structure includes p+-doped and undoped InAs layers, inducing a strong built-in electric field that enables terahertz generation without requiring any external bias voltage. A large-area plasmonic nanoantenna array is used to enhance and confine optical generation inside the photoconductive region with the highest built-in electric field, leading to the generation of a strong ultrafast photocurrent and broadband terahertz radiation. Thanks to a higher terahertz transmission through the silicon substrate and a shorter carrier lifetime in the InAs layers grown on silicon, higher signal-to-noise ratios are achieved at high terahertz frequencies compared with previously demonstrated bias-free terahertz emitters realized on GaAs. In addition to compatibility with silicon integrated optoelectronic platforms, the presented bias-free photoconductive emitter provides more than a 6 THz radiation bandwidth with more than 100 dB dynamic range when used in a terahertz time-domain spectroscopy system.},
doi = {10.1063/5.0098340},
journal = {Applied Physics Letters},
number = 26,
volume = 120,
place = {United States},
year = {Wed Jun 29 00:00:00 EDT 2022},
month = {Wed Jun 29 00:00:00 EDT 2022}
}

Works referenced in this record:

7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes
journal, September 2014

  • Yang, Shang-Hua; Hashemi, Mohammad R.; Berry, Christopher W.
  • IEEE Transactions on Terahertz Science and Technology, Vol. 4, Issue 5
  • DOI: 10.1109/TTHZ.2014.2342505

All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths
journal, January 2008

  • Sartorius, B.; Roehle, H.; Künzel, H.
  • Optics Express, Vol. 16, Issue 13
  • DOI: 10.1364/OE.16.009565

Next generation 15 µm terahertz antennas: 
mesa-structuring of 
InGaAs/InAlAs photoconductive layers
journal, January 2010

  • Roehle, H.; Dietz, R. J. B.; Hensel, H. J.
  • Optics Express, Vol. 18, Issue 3
  • DOI: 10.1364/OE.18.002296

Schottky barriers and semiconductor band structures
journal, November 1985


1550 nm ErAs:In(Al)GaAs large area photoconductive emitters
journal, September 2012

  • Preu, S.; Mittendorff, M.; Lu, H.
  • Applied Physics Letters, Vol. 101, Issue 10
  • DOI: 10.1063/1.4750244

High power terahertz generation using 1550 nm plasmonic photomixers
journal, July 2014

  • Berry, Christopher W.; Hashemi, Mohammad R.; Preu, Sascha
  • Applied Physics Letters, Vol. 105, Issue 1
  • DOI: 10.1063/1.4890102

Wavelength conversion through plasmon-coupled surface states
journal, July 2021


Gapless Broadband Terahertz Emission from a Germanium Photoconductive Emitter
journal, May 2018


Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas
journal, February 1997

  • Matsuura, Shuji; Tani, Masahiko; Sakai, Kiyomi
  • Applied Physics Letters, Vol. 70, Issue 5
  • DOI: 10.1063/1.118337

High-power terahertz pulse generation from bias-free nanoantennas on graded composition InGaAs structures
journal, January 2022

  • Lu, Ping-Keng; Turan, Deniz; Jarrahi, Mona
  • Optics Express, Vol. 30, Issue 2
  • DOI: 10.1364/OE.447733

A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity
journal, June 2017


Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy
journal, February 1997

  • Bhargava, S.; Blank, H. -R.; Narayanamurti, V.
  • Applied Physics Letters, Vol. 70, Issue 6
  • DOI: 10.1063/1.118271

Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review
journal, December 2019

  • Yachmenev, Alexander E.; Lavrukhin, Denis V.; Glinskiy, Igor A.
  • Optical Engineering, Vol. 59, Issue 06
  • DOI: 10.1117/1.OE.59.6.061608

High-Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters
journal, March 2015

  • Yardimci, Nezih T.; Yang, Shang-Hua; Berry, Christopher W.
  • IEEE Transactions on Terahertz Science and Technology, Vol. 5, Issue 2
  • DOI: 10.1109/TTHZ.2015.2395417

1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth
journal, February 2018

  • Nandi, U.; Norman, J. C.; Gossard, A. C.
  • Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 39, Issue 4
  • DOI: 10.1007/s10762-018-0471-9

Nanoplasmonic Terahertz Photoconductive Switch on GaAs
journal, February 2012

  • Heshmat, Barmak; Pahlevaninezhad, Hamid; Pang, Yuanjie,
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303314a

Resonant-optical-cavity photoconductive switch with 05% conversion efficiency and 10W peak power
journal, January 2006

  • Taylor, Z. D.; Brown, E. R.; Bjarnason, J. E.
  • Optics Letters, Vol. 31, Issue 11
  • DOI: 10.1364/OL.31.001729

Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
journal, October 2013

  • Tanoto, H.; Teng, J. H.; Wu, Q. Y.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02824

Terahertz generation using plasmonic photoconductive gratings
journal, October 2012


Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter
journal, April 2002

  • Zhao, G.; Schouten, R. N.; van der Valk, N.
  • Review of Scientific Instruments, Vol. 73, Issue 4
  • DOI: 10.1063/1.1459095

Picosecond photoconducting Hertzian dipoles
journal, August 1984

  • Auston, D. H.; Cheung, K. P.; Smith, P. R.
  • Applied Physics Letters, Vol. 45, Issue 3
  • DOI: 10.1063/1.95174

High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays
journal, November 2016

  • Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona
  • Applied Physics Letters, Vol. 109, Issue 19
  • DOI: 10.1063/1.4967440

Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps
journal, January 2019

  • Lavrukhin, D. V.; Yachmenev, A. E.; Glinskiy, I. A.
  • AIP Advances, Vol. 9, Issue 1
  • DOI: 10.1063/1.5081119

Terahertz Radiation-Band Engineering Through Spatial Beam-Shaping
journal, July 2009


ErAs:In(Al)GaAs photoconductor-based time domain system with 45  THz single shot bandwidth and emitted terahertz power of 164  µW
journal, January 2020

  • Nandi, Uttam; Dutzi, Katja; Deninger, Anselm
  • Optics Letters, Vol. 45, Issue 10
  • DOI: 10.1364/OL.388870

Generation and detection of coherent terahertz waves using two photomixers
journal, December 1998

  • Verghese, S.; McIntosh, K. A.; Calawa, S.
  • Applied Physics Letters, Vol. 73, Issue 26
  • DOI: 10.1063/1.122906

Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters
journal, January 2016

  • Singh, Abhishek; Winnerl, Stephan; König-Otto, Jacob C.
  • Optics Express, Vol. 24, Issue 20
  • DOI: 10.1364/OE.24.022628

Electron depletion at InAs free surfaces: Doping-induced acceptorlike gap states
journal, May 2006


Tunable, continuous-wave Terahertz photomixer sources and applications
journal, March 2011

  • Preu, S.; Döhler, G. H.; Malzer, S.
  • Journal of Applied Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.3552291

Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes
journal, March 2013

  • Berry, C. W.; Wang, N.; Hashemi, M. R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2638

Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions
journal, April 2011

  • Hsieh, Bing-Yu; Jarrahi, Mona
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3567909

Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands
journal, January 2020

  • Murakami, Hironaru; Takarada, Tomoya; Tonouchi, Masayoshi
  • Photonics Research, Vol. 8, Issue 9
  • DOI: 10.1364/PRJ.395517

High-power tunable terahertz generation based on photoconductive antenna arrays
conference, June 2008

  • Jarrahi, Mona; Lee, Thomas H.
  • 2008 IEEE MTT-S International Microwave Symposium Digest - MTT 2008
  • DOI: 10.1109/MWSYM.2008.4633185

Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor
journal, November 2011

  • Peytavit, E.; Lepilliet, S.; Hindle, F.
  • Applied Physics Letters, Vol. 99, Issue 22
  • DOI: 10.1063/1.3664635

Generation and detection of terahertz pulses from biased semiconductor antennas
journal, January 1996

  • Jepsen, P. Uhd; Jacobsen, R. H.; Keiding, S. R.
  • Journal of the Optical Society of America B, Vol. 13, Issue 11
  • DOI: 10.1364/JOSAB.13.002424