DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Beneficial Effects of La 0.5 Sr 0.5 CoO 3 Coatings on Thin‐Film LiMn 2 O 4 Cathodes for Lithium Ion Batteries

Abstract

Abstract The severe capacity loss of spinel LiMn 2 O 4 (LMO) limits the utility of this otherwise promising lithium ion battery cathode material. One of the strategies to mitigate capacity fade is applying a coating on LMO particle surfaces. While this approach yields promising results, there is limited understanding of mechanisms whereby coatings improve LMO capacity retention. Herein, the effects of a new protective coating material, La 0.5 Sr 0.5 CoO 3 (LSCO), in a thin‐film battery geometry that is amenable to fundamental studies of electrode processes, are reported. RF sputtering deposition is used to produce high quality 25–100 nm LMO cathodes on Al 2 O 3 substrates with an intervening Pt/Ti back‐side contact layer. Cycling of the un‐coated cathodes results in capacity loss of 18% over 300 cycles. Adding a 2 nm LSCO layer reduces the capacity loss to 3%. While this may be due in part to reduced Mn dissolution, scanning transmission electron microscopy results indicate that the coating helps to preserve crystallinity and reduce lattice structure distortion due to inhibited formation of defect tetragonal spinel. Three‐electrode electrochemical impedance spectroscopy results reveal that the LSCO coating increases charge transfer and ohmic resistances, but the increases are generally too smallmore » to significantly impact cell performance even at high C‐rates.« less

Authors:
 [1];  [1];  [2];  [2];  [2]; ORCiD logo [1]
  1. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
  2. NUANCE Center Northwestern University Evanston IL 60208 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1973540
Alternate Identifier(s):
OSTI ID: 1983441
Resource Type:
Published Article
Journal Name:
Advanced Sustainable Systems
Additional Journal Information:
Journal Name: Advanced Sustainable Systems Journal Volume: 7 Journal Issue: 9; Journal ID: ISSN 2366-7486
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Yu, Xiankai, Scipioni, Roberto, Xu, Yao‐bin, Wu, Jinsong, Dravid, Vinayak P., and Barnett, Scott A. Beneficial Effects of La 0.5 Sr 0.5 CoO 3 Coatings on Thin‐Film LiMn 2 O 4 Cathodes for Lithium Ion Batteries. Germany: N. p., 2023. Web. doi:10.1002/adsu.202300137.
Yu, Xiankai, Scipioni, Roberto, Xu, Yao‐bin, Wu, Jinsong, Dravid, Vinayak P., & Barnett, Scott A. Beneficial Effects of La 0.5 Sr 0.5 CoO 3 Coatings on Thin‐Film LiMn 2 O 4 Cathodes for Lithium Ion Batteries. Germany. https://doi.org/10.1002/adsu.202300137
Yu, Xiankai, Scipioni, Roberto, Xu, Yao‐bin, Wu, Jinsong, Dravid, Vinayak P., and Barnett, Scott A. Sat . "Beneficial Effects of La 0.5 Sr 0.5 CoO 3 Coatings on Thin‐Film LiMn 2 O 4 Cathodes for Lithium Ion Batteries". Germany. https://doi.org/10.1002/adsu.202300137.
@article{osti_1973540,
title = {Beneficial Effects of La 0.5 Sr 0.5 CoO 3 Coatings on Thin‐Film LiMn 2 O 4 Cathodes for Lithium Ion Batteries},
author = {Yu, Xiankai and Scipioni, Roberto and Xu, Yao‐bin and Wu, Jinsong and Dravid, Vinayak P. and Barnett, Scott A.},
abstractNote = {Abstract The severe capacity loss of spinel LiMn 2 O 4 (LMO) limits the utility of this otherwise promising lithium ion battery cathode material. One of the strategies to mitigate capacity fade is applying a coating on LMO particle surfaces. While this approach yields promising results, there is limited understanding of mechanisms whereby coatings improve LMO capacity retention. Herein, the effects of a new protective coating material, La 0.5 Sr 0.5 CoO 3 (LSCO), in a thin‐film battery geometry that is amenable to fundamental studies of electrode processes, are reported. RF sputtering deposition is used to produce high quality 25–100 nm LMO cathodes on Al 2 O 3 substrates with an intervening Pt/Ti back‐side contact layer. Cycling of the un‐coated cathodes results in capacity loss of 18% over 300 cycles. Adding a 2 nm LSCO layer reduces the capacity loss to 3%. While this may be due in part to reduced Mn dissolution, scanning transmission electron microscopy results indicate that the coating helps to preserve crystallinity and reduce lattice structure distortion due to inhibited formation of defect tetragonal spinel. Three‐electrode electrochemical impedance spectroscopy results reveal that the LSCO coating increases charge transfer and ohmic resistances, but the increases are generally too small to significantly impact cell performance even at high C‐rates.},
doi = {10.1002/adsu.202300137},
journal = {Advanced Sustainable Systems},
number = 9,
volume = 7,
place = {Germany},
year = {Sat May 13 00:00:00 EDT 2023},
month = {Sat May 13 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adsu.202300137

Save / Share:

Works referenced in this record:

Surface modification of LiMn2O4 cathode with LaCoO3 by a molten salt method for lithium ion batteries
journal, March 2021


Improved Electrochemical Performances of Surface-Modified Spinel LiMn[sub 2]O[sub 4] for Long Cycle Life Lithium-Ion Batteries
journal, January 2003

  • Sun, Yucheng; Wang, Zhaoxiang; Chen, Liquan
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1601228

Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells
journal, April 1994


Capacity Fading on Cycling of 4 V Li∕LiMn[sub 2]O[sub 4] Cells
journal, January 1997

  • Xia, Yongyao
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837870

Dissolution of Spinel Oxides and Capacity Losses in 4V Li / LixMn2O4 Cells
journal, January 1996

  • Jang, Dong H.; Shin, Young J.; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7, p. 2204-2211
  • DOI: 10.1149/1.1836981

Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques
journal, September 1999


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques
journal, September 2008


High Rate, Superior Capacity Retention LiMn[sub 2−2y]Li[sub y]Ni[sub y]O[sub 4] Spinel Cathodes for Lithium-Ion Batteries
journal, January 2003

  • Shin, Youngjoon; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 2
  • DOI: 10.1149/1.1535751

Revealing the complex layered-mosaic structure of the cathode electrolyte interphase in Li-ion batteries
journal, September 2020


A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO 4 /Graphite 26650 Cylindrical Cell
journal, January 2017

  • Scipioni, Roberto; Jørgensen, Peter S.; Graves, Christopher
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1071709jes

The Impedance Response of a Porous Electrode Composed of Intercalation Particles
journal, January 2000

  • Meyers, Jeremy P.; Doyle, Marc; Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393627

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings
journal, August 2010

  • Walz, Kenneth A.; Johnson, Christopher S.; Genthe, Jamie
  • Journal of Power Sources, Vol. 195, Issue 15, p. 4943-4951
  • DOI: 10.1016/j.jpowsour.2010.03.007

Impedance Spectroscopy
book, January 2005


Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Surface Structure Evolution of LiMn 2 O 4 Cathode Material upon Charge/Discharge
journal, May 2014

  • Tang, Daichun; Sun, Yang; Yang, Zhenzhong
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm501125e

Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes
journal, November 2012

  • Song, Juhyun; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.023301jes

Enhancing the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a conductive LaCoO3 coating
journal, June 2021


Disproportionation of stoichiometric LiMn2O4 on annealing in oxygen
journal, January 2004


Trap State Spectroscopy of LiMyMn2-yO4 (M = Mn, Ni, Co): Guiding Principles for Electrochemical Performance
journal, February 2013

  • Ragavendran, Krishna Rao; Lu, Li; Hwang, Bing Joe
  • The Journal of Physical Chemistry C, Vol. 117, Issue 8
  • DOI: 10.1021/jp3118727

Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn 2 O 4
journal, January 2019

  • Gao, Xiang; Ikuhara, Yumi H.; Fisher, Craig A. J.
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/C8TA08083F

A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries
journal, February 2012

  • Kim, Joo-Seong; Kim, KyungSu; Cho, Woosuk
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303619s

Pulsed Laser Deposition and Characterization of Heteroepitaxial LiMn 2 O 4 /La 0.5 Sr 0.5 CoO 3 Bilayer Thin Films as Model Lithium Ion Battery Cathodes
journal, January 2018

  • Yu, Xiankai; Chen, Xiao; Buchholz, D. Bruce
  • ACS Applied Nano Materials, Vol. 1, Issue 2
  • DOI: 10.1021/acsanm.7b00133

In Situ Synchrotron X-Ray Diffraction Studies of the Phase Transitions in Li[sub x]Mn[sub 2]O[sub 4] Cathode Materials
journal, January 1999

  • Yang, X. Q.
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 4
  • DOI: 10.1149/1.1390768

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Fast Li-Ion Insertion into Nanosized LiMn 2 O 4 without Domain Boundaries
journal, January 2010

  • Okubo, Masashi; Mizuno, Yoshifumi; Yamada, Hirotoshi
  • ACS Nano, Vol. 4, Issue 2
  • DOI: 10.1021/nn9012065

Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach
journal, December 2014

  • Lu, Jun; Zhan, Chun; Wu, Tianpin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6693

Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries
journal, July 2000


Onset Mechanism of Jahn-Teller Distortion in 4 V LiMn[sub 2]O[sub 4] and Its Suppression by LiM[sub 0.05]Mn[sub 1.95]O[sub 4] (M = Co, Ni) Coating
journal, January 2005

  • Chung, Kyung Yoon; Ryu, Chang-Wan; Kim, Kwang-Bum
  • Journal of The Electrochemical Society, Vol. 152, Issue 4
  • DOI: 10.1149/1.1870755

Factors Affecting the Stabilization of Mn Spinel Capacity upon Staring and Cycling at High Temperatures
journal, August 1998

  • Antonini, A.; Bellitto, C.; Pasquali, M.
  • Journal of The Electrochemical Society, Vol. 145, Issue 8
  • DOI: 10.1149/1.1838705

Separation of Charge Transfer and Contact Resistance in LiFePO 4 -Cathodes by Impedance Modeling
journal, January 2012

  • Illig, J.; Ender, M.; Chrobak, T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.030207jes

Frequency response of unified dielectric and conductive systems involving an exponential distribution of activation energies
journal, September 1985

  • Macdonald, J. Ross
  • Journal of Applied Physics, Vol. 58, Issue 5
  • DOI: 10.1063/1.336003

Recent developments in cathode materials for lithium ion batteries
journal, February 2010


Simulation of the surface structure of lithium manganese oxide spinel
journal, May 2011


Lithium insertion into manganese spinels
journal, April 1983

  • Thackeray, M. M.; David, W. I. F.; Bruce, P. G.
  • Materials Research Bulletin, Vol. 18, Issue 4, p. 461-472
  • DOI: 10.1016/0025-5408(83)90138-1

Unusual Spinel-to-Layered Transformation in LiMn 2 O 4 Cathode Explained by Electrochemical and Thermal Stability Investigation
journal, September 2017

  • Ben, Liubin; Yu, Hailong; Chen, Bin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 40
  • DOI: 10.1021/acsami.7b11303

Review—Manganese Dissolution from Spinel Cathode: Few Unanswered Questions
journal, December 2016

  • Bhandari, Arihant; Bhattacharya, Jishnu
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0101614jes

Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO 2 Electrode
journal, June 2007

  • Okubo, Masashi; Hosono, Eiji; Kim, Jedeok
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja0681927

Solid-state chemistry of lithium power sources†
journal, January 1997


Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide
journal, January 2017


Lithium batteries: Status, prospects and future
journal, May 2010


Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering
journal, May 2008


Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage Li x Ni 0.5 Mn 1.5 O 4 Spinel
journal, July 2013

  • Lee, Eunseok; Persson, Kristin A.
  • Chemistry of Materials, Vol. 25, Issue 14
  • DOI: 10.1021/cm4014738

The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc
journal, January 2008

  • Gaberscek, Miran; Moskon, Joze; Erjavec, Bostjan
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 10
  • DOI: 10.1149/1.2964220

Surface Mn Oxidation State Controlled Spinel LiMn 2 O 4 as a Cathode Material for High-Energy Li-Ion Batteries
journal, May 2015

  • Jeong, Minseul; Lee, Min-Joon; Cho, Jaephil
  • Advanced Energy Materials, Vol. 5, Issue 13
  • DOI: 10.1002/aenm.201500440

High-throughput computational design of cathode coatings for Li-ion batteries
journal, December 2016

  • Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13779

A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers
journal, January 2011

  • Marks, Thomas; Trussler, Simon; Smith, A. J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 1
  • DOI: 10.1149/1.3515072

Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene
journal, June 2015

  • Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo
  • Advanced Energy Materials, Vol. 5, Issue 17
  • DOI: 10.1002/aenm.201500646

Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4
journal, January 2015


Surface coating of spinel LiMn2O4 cathode electrode with lithium–nickel–manganese-oxide by RF sputtering method for lithium-ion batteries
journal, September 2014


Study on Electrode Kinetics of Li + Insertion in Li x Mn 2 O 4 (0 ≤ x ≤ 1) by Electrochemical Impedance Spectroscopy
journal, July 2007

  • Lu, Dongsheng; Li, Weishan; Zuo, Xiaoxi
  • The Journal of Physical Chemistry C, Vol. 111, Issue 32
  • DOI: 10.1021/jp0732920

Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell
journal, January 1990

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 137, Issue 3
  • DOI: 10.1149/1.2086552

Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries
journal, May 2014

  • Park, Joong Sun; Meng, Xiangbo; Elam, Jeffrey W.
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm500512n

Surface structure and equilibrium particle shape of the LiMn 2 O 4 spinel from first-principles calculations
journal, February 2013