DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From Layered Antiferromagnet to 3D Ferromagnet: LiMnBi-to-MnBi Magneto-Structural Transformation

Abstract

Here, the intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. The synthesis temperature of 850 K was selected based on in-situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). LiMnBi structure is built of the alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic properties measurements and solid-state 7Li Nuclear Magnetic Resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of Mn sublattice at ~340 K, with no superconductivity down to 5 K detected. LiMnBi is air- and water-sensitive. In aerobic conditions, Li can be extracted from LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi, or from the structurally related CaMn2Bi2. Suchmore » a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogs is unfavorably long. The studies of delithiation from the layered-like LiMnBi under different chemical environments indicate that the yield of the MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ~50 % of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds.« less

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [4];  [3];  [2];  [2]; ORCiD logo [3]
  1. Iowa State Univ., Ames, IA (United States); Univ. of Alberta, Edmonton, AB (Canada)
  2. Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States)
  3. Iowa State Univ., Ames, IA (United States)
  4. Guangdong University of Technology, Guangzhou (China)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE); National Science Foundation (NSF); Guangdong Basic and Applied Basic Research Foundation
OSTI Identifier:
1972805
Report Number(s):
IS-J 11,034
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
AC02-07CH11358; DMR-1944551; 2021A1515110328; 2022A1515012174
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 35; Journal Issue: 8; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Crystal structure; Diffraction; Magnetic properties; Organic reactions; Transition metals

Citation Formats

Gvozdetskyi, Volodymyr, Rana, Khusboo, Ribeiro, Raquel A., Mantravadi, Aishwarya, Adeyemi, Adedoyin N., Wang, Renhai, Dong, Huafeng, Ho, Kai-Ming, Furukawa, Yuji, Canfield, Paul C., and Zaikina, Julia V. From Layered Antiferromagnet to 3D Ferromagnet: LiMnBi-to-MnBi Magneto-Structural Transformation. United States: N. p., 2023. Web. doi:10.1021/acs.chemmater.3c00140.
Gvozdetskyi, Volodymyr, Rana, Khusboo, Ribeiro, Raquel A., Mantravadi, Aishwarya, Adeyemi, Adedoyin N., Wang, Renhai, Dong, Huafeng, Ho, Kai-Ming, Furukawa, Yuji, Canfield, Paul C., & Zaikina, Julia V. From Layered Antiferromagnet to 3D Ferromagnet: LiMnBi-to-MnBi Magneto-Structural Transformation. United States. https://doi.org/10.1021/acs.chemmater.3c00140
Gvozdetskyi, Volodymyr, Rana, Khusboo, Ribeiro, Raquel A., Mantravadi, Aishwarya, Adeyemi, Adedoyin N., Wang, Renhai, Dong, Huafeng, Ho, Kai-Ming, Furukawa, Yuji, Canfield, Paul C., and Zaikina, Julia V. Thu . "From Layered Antiferromagnet to 3D Ferromagnet: LiMnBi-to-MnBi Magneto-Structural Transformation". United States. https://doi.org/10.1021/acs.chemmater.3c00140. https://www.osti.gov/servlets/purl/1972805.
@article{osti_1972805,
title = {From Layered Antiferromagnet to 3D Ferromagnet: LiMnBi-to-MnBi Magneto-Structural Transformation},
author = {Gvozdetskyi, Volodymyr and Rana, Khusboo and Ribeiro, Raquel A. and Mantravadi, Aishwarya and Adeyemi, Adedoyin N. and Wang, Renhai and Dong, Huafeng and Ho, Kai-Ming and Furukawa, Yuji and Canfield, Paul C. and Zaikina, Julia V.},
abstractNote = {Here, the intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. The synthesis temperature of 850 K was selected based on in-situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). LiMnBi structure is built of the alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic properties measurements and solid-state 7Li Nuclear Magnetic Resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of Mn sublattice at ~340 K, with no superconductivity down to 5 K detected. LiMnBi is air- and water-sensitive. In aerobic conditions, Li can be extracted from LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi, or from the structurally related CaMn2Bi2. Such a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogs is unfavorably long. The studies of delithiation from the layered-like LiMnBi under different chemical environments indicate that the yield of the MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ~50 % of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds.},
doi = {10.1021/acs.chemmater.3c00140},
journal = {Chemistry of Materials},
number = 8,
volume = 35,
place = {United States},
year = {Thu Apr 06 00:00:00 EDT 2023},
month = {Thu Apr 06 00:00:00 EDT 2023}
}

Works referenced in this record:

Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm
journal, January 2014


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Metastable Layered Cobalt Chalcogenides from Topochemical Deintercalation
journal, December 2016

  • Zhou, Xiuquan; Wilfong, Brandon; Vivanco, Hector
  • Journal of the American Chemical Society, Vol. 138, Issue 50
  • DOI: 10.1021/jacs.6b10229

Superconductivity in ternary iron pnictides: AFe2As2 (A = alkali metal) and LiFeAs
journal, December 2010


To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report
journal, June 2009

  • Ishida, Kenji; Nakai, Yusuke; Hosono, Hideo
  • Journal of the Physical Society of Japan, Vol. 78, Issue 6
  • DOI: 10.1143/JPSJ.78.062001

Projector augmented-wave method
journal, December 1994


Synthesizing the Hard Magnetic Low-Temperature Phase of MnBi Alloy: Challenges and Prospects
journal, April 2020


Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs
journal, September 2019

  • Gvozdetskyi, Volodymyr; Bhaskar, Gourab; Batuk, Maria
  • Angewandte Chemie International Edition, Vol. 58, Issue 44
  • DOI: 10.1002/anie.201907499

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Magnetochemische Untersuchungen. Die thermomagnetischen Eigenschaften der Elemente. II
journal, January 1912


Pressure-induced superconductivity in CaFe 2 As 2
journal, July 2008


Metal-Redox Synthesis of MnBi Hard Magnetic Nanoparticles
journal, June 2015


Nuclear Spin-Lattice Relaxation in Magnetic Insulators
journal, February 1968


An adaptive genetic algorithm for crystal structure prediction
journal, December 2013


Topotactic Redox Chemistry of NaFeAs in Water and Air and Superconducting Behavior with Stoichiometry Change
journal, July 2010

  • Todorov, Iliya; Chung, Duck Young; Claus, Helmut
  • Chemistry of Materials, Vol. 22, Issue 13
  • DOI: 10.1021/cm100252r

Metastable 11 K Superconductor Na 1– y Fe 2– x As 2
journal, July 2012

  • Friederichs, Gina M.; Schellenberg, Inga; Pöttgen, Rainer
  • Inorganic Chemistry, Vol. 51, Issue 15
  • DOI: 10.1021/ic3005618

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals
journal, November 2014


Thermal Stability and Thermoelectric Properties of NaZnSb
journal, December 2018

  • Gvozdetskyi, Volodymyr; Owens-Baird, Bryan; Hong, Sangki
  • Materials, Vol. 12, Issue 1
  • DOI: 10.3390/ma12010048

Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi
journal, May 2016

  • Williams, T. J.; Taylor, A. E.; Christianson, A. D.
  • Applied Physics Letters, Vol. 108, Issue 19
  • DOI: 10.1063/1.4948933

Near room temperature antiferromagnetic ordering with a potential low-dimensional magnetism in AlMn 2 B 2
journal, June 2019


Magnetic properties of MnBi prepared by rapid solidification
journal, December 1992


Contribution to the equilibrium phase diagram of the Mn–Bi system near MnBi
journal, May 1974


The Magnetic and Crystallographic Properties of MnBi Studied by Neutron Diffraction.
journal, January 1967


On the synthesis and microstructure analysis of high performance MnBi
journal, December 2016

  • Chen, Yu-Chun; Sawatzki, Simon; Ener, Semih
  • AIP Advances, Vol. 6, Issue 12
  • DOI: 10.1063/1.4971759

High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment
journal, December 2014

  • Nguyen, Van Vuong; Poudyal, Narayan; Liu, Xubo
  • IEEE Transactions on Magnetics, Vol. 50, Issue 12
  • DOI: 10.1109/TMAG.2014.2341659

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Pressure Induced Superconductivity in CaFe 2 As 2
journal, July 2008


Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure
journal, May 2009


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Magnetic properties in MnBi alloy of small crystallites for permanent magnet devices
conference, January 2016

  • Sharma, S. K.; Prakash, H. R.; Ram, S.
  • AIP Conference Proceedings
  • DOI: 10.1063/1.4946708

New-Structure-Type Fe-Based Superconductors: Ca A Fe 4 As 4 ( A = K, Rb, Cs) and Sr A Fe 4 As 4 ( A = Rb, Cs)
journal, March 2016

  • Iyo, Akira; Kawashima, Kenji; Kinjo, Tatsuya
  • Journal of the American Chemical Society, Vol. 138, Issue 10
  • DOI: 10.1021/jacs.5b12571

Iron-Based Layered Superconductor:  LaOFeP
journal, August 2006

  • Kamihara, Yoichi; Hiramatsu, Hidenori; Hirano, Masahiro
  • Journal of the American Chemical Society, Vol. 128, Issue 31
  • DOI: 10.1021/ja063355c

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Preparation of Highly Pure MnBi Intermetallic Compounds by Arc-Melting
journal, January 1999


Structural and Ferromagnetic Properties of an Orthorhombic Phase of MnBi Stabilized with Rh Additions
journal, July 2015


Current progress and future challenges in rare-earth-free permanent magnets
journal, October 2018


Iron-based superconductors: Current status of materials and pairing mechanism
journal, July 2015


Effect of composition and heat treatment on MnBi magnetic materials
journal, October 2014


FeAs-Based Superconductivity: A Case Study of the Effects of Transition Metal Doping on BaFe 2 As 2
journal, August 2010


Neue AMnX-verbindungen mit A ↔ Rb, Cs und X ↔ P, As, Sb, Bi: Struktur und Magnetismus
journal, October 1991


Zur Charakterisierung der magnetischen Eigenschaften von NaMnP, NaMnAs, NaMnSb, NaMnBi, LiMnAs und KMnAs �ber Neutronenbeugungsexperimente
journal, August 1986

  • Bronger, W.; M�ller, P.; H�ppner, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 539, Issue 8
  • DOI: 10.1002/zaac.19865390816

Mn-based permanent magnets
journal, November 2018


High-temperature superconductivity in iron pnictides and chalcogenides
journal, March 2016


Tern�re Verbindungen des Lithiums und Natriums mit Mangan und Elementen der 5. Hauptgruppe
journal, April 1981

  • Achenbach, G.; Schuster, H. -U.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 475, Issue 4
  • DOI: 10.1002/zaac.19814750403

Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr 2 Si 2 -type KNi 2 Se 2
journal, April 2012

  • Neilson, James R.; McQueen, Tyrel M.
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja212012k

Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs
journal, November 2013


Die thermomagnetischen Eigenschaften der Elemente
journal, January 1910


Ultrahigh-pressure phases of H 2 O ice predicted using an adaptive genetic algorithm
journal, December 2011


Frontiers of Research on Iron-Based Superconductors toward Their Application
journal, December 2011

  • Tanabe, Keiichi; Hosono, Hideo
  • Japanese Journal of Applied Physics, Vol. 51, Issue 1
  • DOI: 10.1143/JJAP.51.010005

The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides
journal, October 2010