DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and Varying Acidity of Seed Aerosol Conditions

Abstract

Isoprene is the non-methane volatile organic compound (VOC) emitted in largest amounts to the atmosphere, and it is a significant source of secondary organic aerosol (SOA) mass. The uptake of isoprene oxidation products followed by multiphase chemistry in fine particles is the key pathway to form isoprene epoxydiol-derived SOA (IEPOX-SOA). However, many parameters that relate to diffusion and reaction of IEPOX in the particle phase remain uncertain, since reaction kinetics previously measured in bulk aqueous phase solutions might be different from atmospheric aerosols. Here, we use simultaneous environmental chamber measurements of multiple parameters governing IEPOX-SOA formation at timescales of ~hours: particle size distribution, composition, and volatility of IEPOX-SOA to constrain the key parameters governing IE-POX-SOA formation under humid (i.e., 50% relative humidity, RH) and varying seed aerosol acidity conditions. Reducing the 2-methyltetrol (tetrol) reaction rate constants by a factor of 4 brings the model predictions in agreement with the IEPOX-SOA measurements with acidified ammonium bisulfate seed aerosols. For less acidic ammonium sulfate aerosols both the organo-sulfate (OS) and tetrol reaction rate constants need to be reduced to bring model predictions closer to chamber observations. Using the measured non-volatile content of IEPOX-SOA we constrain the oligomerization timescale of 2-methyltetrols. We findmore » that the oligomerization timescale is 4 hours with acidified seed aerosols, but a much longer time scale of 24 hours is needed for non-acidified seed aerosols, indicating that the aerosol acidity greatly affects the oligomerization rate of tetrols. Here we show that the actual kinetics of IEPOX-SOA formation rate on aerosol seeds consisting of both ammonium bisulfate and ammonium sulfate are a factor of 4~5 slower under 50-60% RH conditions compared to their application in previous models, which were based on bulk aqueous solution measurements.« less

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo
  1. Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
  2. University of North Carolina, Chapel Hill, NC (United States)
  3. University of Lyon (France)
  4. Paul Scherrer Institute (PSI), Villigen (Switzerland)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1970743
Report Number(s):
PNNL-SA-180012
Journal ID: ISSN 2472-3452
Grant/Contract Number:  
AC05-76RL01830; AGS-2039788
Resource Type:
Accepted Manuscript
Journal Name:
ACS Earth and Space Chemistry
Additional Journal Information:
Journal Volume: 7; Journal Issue: 4; Journal ID: ISSN 2472-3452
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; IEPOX-SOA; reactive uptake; acid-driven reactions; tetrol oligomerization; elevated relative humidity

Citation Formats

Zhang, Jie, Shrivastava, Manish, Zelenyuk, Alla, Zaveri, Rahul A., Surratt, Jason D., Riva, Matthieu, Bell, David M., and Glasius, Marianne. Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and Varying Acidity of Seed Aerosol Conditions. United States: N. p., 2023. Web. doi:10.1021/acsearthspacechem.2c00358.
Zhang, Jie, Shrivastava, Manish, Zelenyuk, Alla, Zaveri, Rahul A., Surratt, Jason D., Riva, Matthieu, Bell, David M., & Glasius, Marianne. Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and Varying Acidity of Seed Aerosol Conditions. United States. https://doi.org/10.1021/acsearthspacechem.2c00358
Zhang, Jie, Shrivastava, Manish, Zelenyuk, Alla, Zaveri, Rahul A., Surratt, Jason D., Riva, Matthieu, Bell, David M., and Glasius, Marianne. Wed . "Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and Varying Acidity of Seed Aerosol Conditions". United States. https://doi.org/10.1021/acsearthspacechem.2c00358. https://www.osti.gov/servlets/purl/1970743.
@article{osti_1970743,
title = {Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and Varying Acidity of Seed Aerosol Conditions},
author = {Zhang, Jie and Shrivastava, Manish and Zelenyuk, Alla and Zaveri, Rahul A. and Surratt, Jason D. and Riva, Matthieu and Bell, David M. and Glasius, Marianne},
abstractNote = {Isoprene is the non-methane volatile organic compound (VOC) emitted in largest amounts to the atmosphere, and it is a significant source of secondary organic aerosol (SOA) mass. The uptake of isoprene oxidation products followed by multiphase chemistry in fine particles is the key pathway to form isoprene epoxydiol-derived SOA (IEPOX-SOA). However, many parameters that relate to diffusion and reaction of IEPOX in the particle phase remain uncertain, since reaction kinetics previously measured in bulk aqueous phase solutions might be different from atmospheric aerosols. Here, we use simultaneous environmental chamber measurements of multiple parameters governing IEPOX-SOA formation at timescales of ~hours: particle size distribution, composition, and volatility of IEPOX-SOA to constrain the key parameters governing IE-POX-SOA formation under humid (i.e., 50% relative humidity, RH) and varying seed aerosol acidity conditions. Reducing the 2-methyltetrol (tetrol) reaction rate constants by a factor of 4 brings the model predictions in agreement with the IEPOX-SOA measurements with acidified ammonium bisulfate seed aerosols. For less acidic ammonium sulfate aerosols both the organo-sulfate (OS) and tetrol reaction rate constants need to be reduced to bring model predictions closer to chamber observations. Using the measured non-volatile content of IEPOX-SOA we constrain the oligomerization timescale of 2-methyltetrols. We find that the oligomerization timescale is 4 hours with acidified seed aerosols, but a much longer time scale of 24 hours is needed for non-acidified seed aerosols, indicating that the aerosol acidity greatly affects the oligomerization rate of tetrols. Here we show that the actual kinetics of IEPOX-SOA formation rate on aerosol seeds consisting of both ammonium bisulfate and ammonium sulfate are a factor of 4~5 slower under 50-60% RH conditions compared to their application in previous models, which were based on bulk aqueous solution measurements.},
doi = {10.1021/acsearthspacechem.2c00358},
journal = {ACS Earth and Space Chemistry},
number = 4,
volume = 7,
place = {United States},
year = {Wed Mar 29 00:00:00 EDT 2023},
month = {Wed Mar 29 00:00:00 EDT 2023}
}

Works referenced in this record:

The influence of OH concentration on SOA formation from isoprene photooxidation
journal, February 2019


Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds
journal, January 2014

  • Nguyen, T. B.; Coggon, M. M.; Bates, K. H.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 7
  • DOI: 10.5194/acp-14-3497-2014

High Precision Density Measurements of Single Particles: The Density of Metastable Phases
journal, October 2005


Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene
journal, August 2007

  • Surratt, Jason D.; Lewandowski, Michael; Offenberg, John H.
  • Environmental Science & Technology, Vol. 41, Issue 15
  • DOI: 10.1021/es0704176

Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS)
journal, April 2017

  • Budisulistiorini, Sri Hapsari; Nenes, Athanasios; Carlton, Annmarie G.
  • Environmental Science & Technology, Vol. 51, Issue 9
  • DOI: 10.1021/acs.est.6b05750

Determination of Volatility Parameters of Secondary Organic Aerosol Components via Thermal Analysis
journal, April 2022

  • Ashraf, Fawad; Babar, Zaeem Bin; Park, Jun-Hyun
  • Atmosphere, Vol. 13, Issue 5
  • DOI: 10.3390/atmos13050709

Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance
journal, March 2020

  • Brüggemann, Martin; Xu, Rongshuang; Tilgner, Andreas
  • Environmental Science & Technology, Vol. 54, Issue 7
  • DOI: 10.1021/acs.est.9b06751

Secondary organic aerosol formation from evaporated biofuels: comparison to gasoline and correction for vapor wall losses
journal, January 2020

  • He, Yicong; King, Brandon; Pothier, Matson
  • Environmental Science: Processes & Impacts, Vol. 22, Issue 7
  • DOI: 10.1039/D0EM00103A

Key Role of NO3 Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing
journal, January 2021

  • Hamilton, Jacqueline F.; Bryant, Daniel J.; Edwards, Peter M.
  • Environmental Science & Technology, Vol. 55, Issue 2
  • DOI: 10.1021/acs.est.0c05689

Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol
journal, January 2007

  • Kleindienst, Tadeusz E.; Lewandowski, Michael; Offenberg, John H.
  • Geophysical Research Letters, Vol. 34, Issue 1
  • DOI: 10.1029/2006GL027485

Mass accommodation coefficient for HO2radicals on aqueous particles
journal, January 1987

  • Mozurkewich, Michael; McMurry, Peter H.; Gupta, Anand
  • Journal of Geophysical Research, Vol. 92, Issue D4
  • DOI: 10.1029/JD092iD04p04163

Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States
journal, June 2015

  • Ying, Qi; Li, Jingyi; Kota, Sri Harsha
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/acs.est.5b02514

Estimation of Aromatic Secondary Organic Aerosol Using a Molecular Tracer—A Chemical Transport Model Assessment
journal, September 2021


Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements
journal, August 2010


Tight Coupling of Surface and In-Plant Biochemistry and Convection Governs Key Fine Particulate Components over the Amazon Rainforest
journal, January 2022


Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction
journal, January 2014

  • Zaveri, R. A.; Easter, R. C.; Shilling, J. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 10
  • DOI: 10.5194/acp-14-5153-2014

Gas-Phase Reactions of Isoprene and Its Major Oxidation Products
journal, February 2018


Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter
journal, February 2016

  • Ding, Xiang; He, Quan-Fu; Shen, Ru-Qin
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20411

Secondary Organic Aerosol Formation From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX‐ and HMML‐Derived Tracers
journal, July 2018

  • He, Quan‐Fu; Ding, Xiang; Fu, Xiao‐Xin
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 13
  • DOI: 10.1029/2017JD028242

Parameterized Yields of Semivolatile Products from Isoprene Oxidation under Different NO x Levels: Impacts of Chemical Aging and Wall-Loss of Reactive Gases
journal, July 2018

  • Xing, Li; Shrivastava, Manish; Fu, Tzung-May
  • Environmental Science & Technology, Vol. 52, Issue 16
  • DOI: 10.1021/acs.est.8b00373

Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation
journal, September 2013

  • Pye, Havala O. T.; Pinder, Robert W.; Piletic, Ivan R.
  • Environmental Science & Technology, Vol. 47, Issue 19
  • DOI: 10.1021/es402106h

Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes
journal, March 1997

  • Atkinson, R.
  • Journal of Physical and Chemical Reference Data, Vol. 26, Issue 2
  • DOI: 10.1063/1.556012

A review of Secondary Organic Aerosol (SOA) formation from isoprene
journal, January 2009

  • Carlton, A. G.; Wiedinmyer, C.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-4987-2009

Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA
journal, February 2016

  • Lopez-Hilfiker, F. D.; Mohr, C.; D’Ambro, E. L.
  • Environmental Science & Technology, Vol. 50, Issue 5
  • DOI: 10.1021/acs.est.5b04769

Gas Phase Production and Loss of Isoprene Epoxydiols
journal, February 2014

  • Bates, Kelvin H.; Crounse, John D.; St. Clair, Jason M.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 7
  • DOI: 10.1021/jp4107958

Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
journal, December 2022

  • Ye, Qing; Goss, Matthew B.; Krechmer, Jordan E.
  • Atmospheric Chemistry and Physics, Vol. 22, Issue 24
  • DOI: 10.5194/acp-22-16003-2022

Organosulfate Formation in Biogenic Secondary Organic Aerosol
journal, September 2008

  • Surratt, Jason D.; Gómez-González, Yadian; Chan, Arthur W. H.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 36
  • DOI: 10.1021/jp802310p

Seasonal Contribution of Isoprene-Derived Organosulfates to Total Water-Soluble Fine Particulate Organic Sulfur in the United States
journal, August 2021


Photochemical formation of organic aerosols: Growth laws and mechanisms
journal, January 1985


Reactive intermediates revealed in secondary organic aerosol formation from isoprene
journal, December 2009

  • Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911114107

Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols
journal, May 2016

  • Riva, Matthieu; Bell, David M.; Hansen, Anne-Maria Kaldal
  • Environmental Science & Technology, Vol. 50, Issue 11
  • DOI: 10.1021/acs.est.5b06050

Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
journal, January 2015

  • Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11807-2015

Aerosol formation in the photooxidation of isoprene and β-pinene
journal, January 1991

  • Pandis, Spyros N.; Paulson, Suzanne E.; Seinfeld, John H.
  • Atmospheric Environment. Part A. General Topics, Vol. 25, Issue 5-6
  • DOI: 10.1016/0960-1686(91)90141-S

A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols
journal, January 2005


Secondary Organic Aerosol Formation from Isoprene Photooxidation
journal, March 2006

  • Kroll, Jesse H.; Ng, Nga L.; Murphy, Shane M.
  • Environmental Science & Technology, Vol. 40, Issue 6
  • DOI: 10.1021/es0524301

The C5–Alkene Triol Conundrum: Structural Characterization and Quantitation of Isoprene-Derived C5H10O3 Reactive Uptake Products
journal, September 2022

  • Frauenheim, Molly; Offenberg, John; Zhang, Zhenfa
  • Environmental Science & Technology Letters, Vol. 9, Issue 10
  • DOI: 10.1021/acs.estlett.2c00548

Effect of OH radical scavengers on secondary organic aerosol formation from reactions of isoprene with ozone
journal, November 2013


Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation
journal, July 2021


Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context
journal, January 2015

  • Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline
  • Journal of The American Society for Mass Spectrometry, Vol. 26, Issue 2
  • DOI: 10.1007/s13361-014-1043-4

Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols
journal, January 2016

  • Riedel, T. P.; Lin, Y. -H.; Zhang, Z.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 3
  • DOI: 10.5194/acp-16-1245-2016

Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles
journal, September 2014

  • Gaston, Cassandra J.; Riedel, Theran P.; Zhang, Zhenfa
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es5034266

Experimental and Theoretical Studies of Isoprene Reaction with NO3
journal, May 2001

  • Suh, Inseon; Lei, Wenfang; Zhang, Renyi
  • The Journal of Physical Chemistry A, Vol. 105, Issue 26
  • DOI: 10.1021/jp0105950

Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX)
journal, February 2018

  • Zhang, Yue; Chen, Yuzhi; Lambe, Andrew T.
  • Environmental Science & Technology Letters, Vol. 5, Issue 3
  • DOI: 10.1021/acs.estlett.8b00044

Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol
journal, June 2017

  • Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
  • Reviews of Geophysics, Vol. 55, Issue 2
  • DOI: 10.1002/2016RG000540

Atmospheric aerosol models for systems including the ions H + , NH 4 + , Na + , SO 4 2− , NO 3 , Cl , Br , and H 2 O
journal, January 2002


Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions
journal, June 2020

  • Akherati, Ali; He, Yicong; Coggon, Matthew M.
  • Environmental Science & Technology, Vol. 54, Issue 14
  • DOI: 10.1021/acs.est.0c01345

Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ
journal, May 2016

  • Krechmer, Jordan E.; Pagonis, Demetrios; Ziemann, Paul J.
  • Environmental Science & Technology, Vol. 50, Issue 11
  • DOI: 10.1021/acs.est.6b00606

Formation of organic tracers for isoprene SOA under acidic conditions
journal, May 2010


PM2.5 chemistry, organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study
journal, January 2021


Modeling Volatility-Based Aerosol Phase State Predictions in the Amazon Rainforest
journal, September 2021


Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
journal, January 2008

  • Zaveri, Rahul A.; Easter, Richard C.; Fast, Jerome D.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD008782

Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates
journal, January 2015

  • Riedel, Theran P.; Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari
  • Environmental Science & Technology Letters, Vol. 2, Issue 2
  • DOI: 10.1021/ez500406f

Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility
journal, January 2019

  • D'Ambro, Emma L.; Schobesberger, Siegfried; Gaston, Cassandra J.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
  • DOI: 10.5194/acp-19-11253-2019

Organosulfates in aerosols downwind of an urban region in central Amazon
journal, January 2018

  • Glasius, Marianne; Bering, Mads S.; Yee, Lindsay D.
  • Environmental Science: Processes & Impacts, Vol. 20, Issue 11
  • DOI: 10.1039/C8EM00413G

On the Reactive Uptake of Gaseous Compounds by Organic-Coated Aqueous Aerosols:  Theoretical Analysis and Application to the Heterogeneous Hydrolysis of N 2 O 5
journal, September 2006

  • Anttila, Tatu; Kiendler-Scharr, Astrid; Tillmann, Ralf
  • The Journal of Physical Chemistry A, Vol. 110, Issue 35
  • DOI: 10.1021/jp062403c

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds
journal, November 2011

  • Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.
  • Environmental Science & Technology, Vol. 46, Issue 1
  • DOI: 10.1021/es202554c

Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol
journal, January 2018

  • Cui, Tianqu; Zeng, Zhexi; dos Santos, Erickson O.
  • Environmental Science: Processes & Impacts, Vol. 20, Issue 11
  • DOI: 10.1039/C8EM00308D

simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)
journal, January 2015


Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol
journal, January 2021

  • He, Yicong; Akherati, Ali; Nah, Theodora
  • Environmental Science & Technology, Vol. 55, Issue 3
  • DOI: 10.1021/acs.est.0c05796

Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO 3 )
journal, January 2008

  • Ng, N. L.; Kwan, A. J.; Surratt, J. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4117-2008

Gas-Phase Oxidation Rates and Products of 1,2-Dihydroxy Isoprene
journal, October 2021

  • Bates, Kelvin H.; Cope, James D.; Nguyen, Tran B.
  • Environmental Science & Technology, Vol. 55, Issue 20
  • DOI: 10.1021/acs.est.1c04177

Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location
journal, December 2007


Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
journal, January 2006

  • Guenther, A.; Karl, T.; Harley, P.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3181-2006

Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene
journal, August 2009


Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols
journal, August 2010

  • Eddingsaas, Nathan C.; VanderVelde, David G.; Wennberg, Paul O.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 31
  • DOI: 10.1021/jp103907c