DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inverse Bremsstrahlung Absorption

Abstract

Inverse bremsstrahlung absorption was measured based on transmission through a finite-length plasma that was thoroughly characterized using spatially resolved Thomson scattering. Expected absorption was then calculated using the diagnosed plasma conditions while varying the absorption model components. To match data, it is necessary to account for: (1) the Langdon effect; (2) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm, as is typical of bremsstrahlung theories but not transport theories; and (3) a correction due to ion screening. Radiation-hydrodynamic simulations of inertial confinement fusion implosions have to date used a Coulomb logarithm from the transport literature and no screening correction. Here, we anticipate that updating the model for collisional absorption will substantially revise our understanding of laser-target coupling for such implosions.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [2];  [1]; ORCiD logo [2];  [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [4]; ORCiD logo [1]
  1. Univ. of Rochester, NY (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Centre Lasers Intenses et Applications, Talence (France)
  4. Univ. of Alberta, Edmonton, AB (Canada)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1969192
Alternate Identifier(s):
OSTI ID: 1972900
Report Number(s):
LLNL-JRNL-843804
Journal ID: ISSN 0031-9007; TRN: US2313388
Grant/Contract Number:  
NA0003856; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 130; Journal Issue: 14; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Direct drive; Inertial confinement fusion; Laser light absorption in plasmas; Near-critical & underdense plasmas

Citation Formats

Turnbull, D., Katz, J., Sherlock, M., Divol, L., Shaffer, N. R., Strozzi, D. J., Colaïtis, A., Edgell, D. H., Follett, R. K., McMillen, K. R., Michel, P., Milder, A. L., and Froula, D. H. Inverse Bremsstrahlung Absorption. United States: N. p., 2023. Web. doi:10.1103/physrevlett.130.145103.
Turnbull, D., Katz, J., Sherlock, M., Divol, L., Shaffer, N. R., Strozzi, D. J., Colaïtis, A., Edgell, D. H., Follett, R. K., McMillen, K. R., Michel, P., Milder, A. L., & Froula, D. H. Inverse Bremsstrahlung Absorption. United States. https://doi.org/10.1103/physrevlett.130.145103
Turnbull, D., Katz, J., Sherlock, M., Divol, L., Shaffer, N. R., Strozzi, D. J., Colaïtis, A., Edgell, D. H., Follett, R. K., McMillen, K. R., Michel, P., Milder, A. L., and Froula, D. H. Tue . "Inverse Bremsstrahlung Absorption". United States. https://doi.org/10.1103/physrevlett.130.145103. https://www.osti.gov/servlets/purl/1969192.
@article{osti_1969192,
title = {Inverse Bremsstrahlung Absorption},
author = {Turnbull, D. and Katz, J. and Sherlock, M. and Divol, L. and Shaffer, N. R. and Strozzi, D. J. and Colaïtis, A. and Edgell, D. H. and Follett, R. K. and McMillen, K. R. and Michel, P. and Milder, A. L. and Froula, D. H.},
abstractNote = {Inverse bremsstrahlung absorption was measured based on transmission through a finite-length plasma that was thoroughly characterized using spatially resolved Thomson scattering. Expected absorption was then calculated using the diagnosed plasma conditions while varying the absorption model components. To match data, it is necessary to account for: (1) the Langdon effect; (2) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm, as is typical of bremsstrahlung theories but not transport theories; and (3) a correction due to ion screening. Radiation-hydrodynamic simulations of inertial confinement fusion implosions have to date used a Coulomb logarithm from the transport literature and no screening correction. Here, we anticipate that updating the model for collisional absorption will substantially revise our understanding of laser-target coupling for such implosions.},
doi = {10.1103/physrevlett.130.145103},
journal = {Physical Review Letters},
number = 14,
volume = 130,
place = {United States},
year = {Tue Apr 04 00:00:00 EDT 2023},
month = {Tue Apr 04 00:00:00 EDT 2023}
}

Works referenced in this record:

Emission, Absorption, and Conductivity of a Fully Ionized Gas at Radio Frequencies
journal, October 1961


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Application of lasers to the production of high-temperature and high-pressure plasma
journal, April 1968


Approximation Formulas for Nonrelativistic Bremsstrahlung and Average Gaunt Factors for a Maxwellian Electron Gas
journal, July 1962


Direct Measurement of the Return Current Instability in a Laser-Produced Plasma
journal, September 2022


Beam Spray Thresholds in ICF-Relevant Plasmas
journal, July 2022


Ab initio calculation of the non-relativistic free–free Gaunt factor incorporating plasma screening
journal, March 2014


High-Frequency Conductivity and the Emission and Absorption Coefficients of a Fully Ionized Plasma
journal, January 1962

  • Dawson, John; Oberman, Carl
  • Physics of Fluids, Vol. 5, Issue 5
  • DOI: 10.1063/1.1706652

Classical molecular dynamic simulations and modeling of inverse bremsstrahlung heating in low Z weakly coupled plasmas
journal, July 2022

  • Devriendt, R.; Poujade, O.
  • Physics of Plasmas, Vol. 29, Issue 7
  • DOI: 10.1063/5.0091662

Impact of the Langdon effect on crossed-beam energy transfer
journal, December 2019


Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas
journal, November 1988


Cross-Beam Energy Transfer Saturation by Ion Heating
journal, February 2021


Molecular-Dynamics Simulations of Electron-Ion Temperature Relaxation in a Classical Coulomb Plasma
journal, September 2008


Analytical formulae for the inverse bremsstrahlung absorption coefficient
journal, December 1974


FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements
journal, December 2005


Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas
journal, January 1973


Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas
journal, April 1998


A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA
journal, October 2012

  • Katz, J.; Boni, R.; Sorce, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733551

Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility
journal, May 2016

  • Davis, A. K.; Cao, D.; Michel, D. T.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946022

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


A transmitted-beam diagnostic for the wavelength-tunable UV drive beam on OMEGA
journal, March 2021

  • Katz, J.; Turnbull, D.; Kruschwitz, B. E.
  • Review of Scientific Instruments, Vol. 92, Issue 3
  • DOI: 10.1063/5.0042877

‘‘Coulomb logarithm’’ for inverse-bremsstrahlung laser absorption
journal, December 1987


Accurate determination of the free–free Gaunt factor – I. Non-relativistic Gaunt factors
journal, August 2014

  • van Hoof, P. A. M.; Williams, R. J. R.; Volk, K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 444, Issue 1
  • DOI: 10.1093/mnras/stu1438

Nonrelativistic Electron–Ion Bremsstrahlung: An Approximate Formula for All Parameters
journal, November 2021


Measurement of laser absorption in underdense plasmas using near-field imaging of the incident and transmitted beams
journal, December 2022

  • Katz, J.; Turnbull, D.; Ivancic, S. T.
  • Review of Scientific Instruments, Vol. 93, Issue 12
  • DOI: 10.1063/5.0100084

Verfahren zur näherungsweisen Anpassung einer Lösung der Schrödinger- an die Diracgleichung
journal, January 1935


Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System
journal, January 2017


Electron Radiative Transitions in a Coulomb Field.
journal, May 1961

  • Karzas, W. J.; Latter, R.
  • The Astrophysical Journal Supplement Series, Vol. 6
  • DOI: 10.1086/190063

Effect of Ion Correlations on High-Frequency Plasma Conductivity
journal, January 1963

  • Dawson, John; Oberman, Carl
  • Physics of Fluids, Vol. 6, Issue 3
  • DOI: 10.1063/1.1706745

Polynomial fit to the Coulomb logarithm for inverse bremsstrahlung
journal, December 1985


Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817

Computation of free-free Gaunt factors and conductive opacities in hot matter
journal, October 1979


Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating
journal, June 2021


Effects of electron-ion temperature equilibration on inertial confinement fusion implosions
journal, July 2011