DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles

Abstract

Here, we demonstrate a new approach for fast preparation, manipulation, and collective readout of an atomic Rydberg-state qubit. By making use of Rydberg blockade inside a small atomic ensemble, we prepare a single qubit within 3 μs with a success probability of $$F_p$$ = 0.93 ± 0.02, rotate it, and read out its state in 6 μs with a single-shot fidelity of $$F_d$$ = 0.92 ± 0.04. The ensemble-assisted detection is 103 times faster than imaging of a single atom with the same optical resolution, and enables fast repeated nondestructive measurement. We observe qubit coherence times of 15 μs, much longer than the π rotation time of 90 ns. Potential applications ranging from faster quantum information processing in atom arrays to efficient implementation of quantum error correction are discussed.

Authors:
 [1]; ORCiD logo [2];  [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Univ. of Erlangen-Nuremberg, Erlangen (Germany); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); US Army Research Office (ARO); US Army Research Laboratory (USARL); US Air Force Office of Scientific Research (AFOSR); Defense Advanced Research Projects Agency (DARPA); Boeing
OSTI Identifier:
1963892
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 127; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Xu, Wenchao, Venkatramani, Aditya V., Cantú, Sergio H., Šumarac, Tamara, Klüsener, Valentin, Lukin, Mikhail D., and Vuletić, Vladan. Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles. United States: N. p., 2021. Web. doi:10.1103/physrevlett.127.050501.
Xu, Wenchao, Venkatramani, Aditya V., Cantú, Sergio H., Šumarac, Tamara, Klüsener, Valentin, Lukin, Mikhail D., & Vuletić, Vladan. Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles. United States. https://doi.org/10.1103/physrevlett.127.050501
Xu, Wenchao, Venkatramani, Aditya V., Cantú, Sergio H., Šumarac, Tamara, Klüsener, Valentin, Lukin, Mikhail D., and Vuletić, Vladan. Tue . "Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles". United States. https://doi.org/10.1103/physrevlett.127.050501. https://www.osti.gov/servlets/purl/1963892.
@article{osti_1963892,
title = {Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles},
author = {Xu, Wenchao and Venkatramani, Aditya V. and Cantú, Sergio H. and Šumarac, Tamara and Klüsener, Valentin and Lukin, Mikhail D. and Vuletić, Vladan},
abstractNote = {Here, we demonstrate a new approach for fast preparation, manipulation, and collective readout of an atomic Rydberg-state qubit. By making use of Rydberg blockade inside a small atomic ensemble, we prepare a single qubit within 3 μs with a success probability of $F_p$ = 0.93 ± 0.02, rotate it, and read out its state in 6 μs with a single-shot fidelity of $F_d$ = 0.92 ± 0.04. The ensemble-assisted detection is 103 times faster than imaging of a single atom with the same optical resolution, and enables fast repeated nondestructive measurement. We observe qubit coherence times of 15 μs, much longer than the π rotation time of 90 ns. Potential applications ranging from faster quantum information processing in atom arrays to efficient implementation of quantum error correction are discussed.},
doi = {10.1103/physrevlett.127.050501},
journal = {Physical Review Letters},
number = 5,
volume = 127,
place = {United States},
year = {Tue Jul 27 00:00:00 EDT 2021},
month = {Tue Jul 27 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1 FIG. 1: Fast collective detector of a single Rydberg atom. a. State initialization. An atom is prepared in the Rydberg state |r′$\rangle$ through a three-photon process involving the preparation beam (Ωp, orange), the control beam (Ωc, blue), and a microwave field (ΩMW, grey). The detunings from the two intermediate statesmore » are ∆e = δr = 2π × 100 MHz. The preparation of a single atom in |r′〉 is ensured by the strong interaction between two atoms in |r′$\rangle$. b. A probe field (orange, waist size wp = 4.5 µm) in combination with the control field (wc = 12.5 µm) couples atoms to the Rydberg state |r′$\rangle$. Under conditions of EIT (∆e = δr = 0), high transmission through the atomic medium results in a large number of detected photons (left). On the other hand, if the Rydberg state |r′$\rangle$ is populated by an atom (right), then the strong interaction between |r$\rangle$ and |r′$\rangle$ removes the EIT condition, resulting in a significant reduction of transmitted photon number due to absorption by the ensemble. The interaction Vrr′ contains both dipolar-exchange (Vex) and van-der-Waals components (VvdW) (see SM).« less

Save / Share:

Works referenced in this record:

Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon
journal, September 2018


Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice
journal, June 2020


Observing the Dynamics of Dipole-Mediated Energy Transport by Interaction-Enhanced Imaging
journal, November 2013


Quantum nondemolition measurements: the route from toys to tools
journal, January 1996


Measurement of the atom number distribution in an optical tweezer using single-photon counting
journal, August 2010


Real-time quantum feedback prepares and stabilizes photon number states
journal, August 2011

  • Sayrin, Clément; Dotsenko, Igor; Zhou, Xingxing
  • Nature, Vol. 477, Issue 7362
  • DOI: 10.1038/nature10376

Demonstration of a Neutral Atom Controlled-NOT Quantum Gate
journal, January 2010


Electromagnetically induced transparency: Optics in coherent media
journal, July 2005

  • Fleischhauer, Michael; Imamoglu, Atac; Marangos, Jonathan P.
  • Reviews of Modern Physics, Vol. 77, Issue 2
  • DOI: 10.1103/RevModPhys.77.633

Observation of Rydberg blockade between two atoms
journal, January 2009

  • Urban, E.; Johnson, T. A.; Henage, T.
  • Nature Physics, Vol. 5, Issue 2
  • DOI: 10.1038/nphys1178

Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
journal, October 2016


Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays
journal, June 2020

  • Wang, Yibo; Shevate, Sayali; Wintermantel, Tobias Martin
  • npj Quantum Information, Vol. 6, Issue 1
  • DOI: 10.1038/s41534-020-0285-1

Single-Shot Readout of a Single Nuclear Spin
journal, July 2010


Single-Photon Switch Based on Rydberg Blockade
journal, February 2014


High-fidelity entanglement and detection of alkaline-earth Rydberg atoms
journal, May 2020


Deterministic generation of multiparticle entanglement by quantum Zeno dynamics
journal, September 2015


Microscopic Characterization of Scalable Coherent Rydberg Superatoms
journal, August 2015


To catch and reverse a quantum jump mid-flight
journal, June 2019


Dipole-Dipole Excitation and Ionization in an Ultracold Gas of Rydberg Atoms
journal, May 2005


Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms
journal, August 2005


Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
journal, November 2016


In situ single-atom array synthesis using dynamic holographic optical tweezers
journal, October 2016

  • Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13317

Quantum nonlinear optics with single photons enabled by strongly interacting atoms
journal, July 2012

  • Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi-Yu
  • Nature, Vol. 488, Issue 7409
  • DOI: 10.1038/nature11361

Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas
journal, August 2016

  • Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix
  • Physical Review X, Vol. 6, Issue 3
  • DOI: 10.1103/PhysRevX.6.031020

Many-body physics with individually controlled Rydberg atoms
journal, January 2020


Probing many-body dynamics on a 51-atom quantum simulator
journal, November 2017

  • Bernien, Hannes; Schwartz, Sylvain; Keesling, Alexander
  • Nature, Vol. 551, Issue 7682
  • DOI: 10.1038/nature24622

Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly
journal, March 2019


Single-Photon Transistor Mediated by Interstate Rydberg Interactions
journal, July 2014


Single-Photon Transistor Using a Förster Resonance
journal, July 2014


Observation of ultralong-range Rydberg molecules
journal, April 2009

  • Bendkowsky, Vera; Butscher, Björn; Nipper, Johannes
  • Nature, Vol. 458, Issue 7241
  • DOI: 10.1038/nature07945

Rydberg-Mediated Entanglement in a Two-Dimensional Neutral Atom Qubit Array
journal, December 2019


Coherence and Rydberg Blockade of Atomic Ensemble Qubits
journal, August 2015


High-Fidelity Control and Entanglement of Rydberg-Atom Qubits
journal, September 2018


Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles
journal, June 2001


Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency
journal, March 2007


Defect-Free Assembly of 2D Clusters of More Than 100 Single-Atom Quantum Systems
journal, May 2019


Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
journal, April 2019


Quantum mechanical calculation of Rydberg–Rydberg autoionization rates
journal, October 2016

  • Kiffner, Martin; Ceresoli, Davide; Li, Wenhui
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 20
  • DOI: 10.1088/0953-4075/49/20/204004

Generation and manipulation of Schrödinger cat states in Rydberg atom arrays
journal, August 2019


An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays
journal, November 2016

  • Barredo, Daniel; de Léséleuc, Sylvain; Lienhard, Vincent
  • Science, Vol. 354, Issue 6315
  • DOI: 10.1126/science.aah3778

Interaction Enhanced Imaging of Individual Rydberg Atoms in Dense Gases
journal, January 2012


Ionization due to the interaction between two Rydberg atoms
journal, January 2005


Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms
journal, October 2019


Spin-resolved single-atom imaging of Li 6 in free space
journal, June 2018

  • Bergschneider, Andrea; Klinkhamer, Vincent M.; Becher, Jan Hendrik
  • Physical Review A, Vol. 97, Issue 6
  • DOI: 10.1103/PhysRevA.97.063613

Fast Quantum Gates for Neutral Atoms
journal, September 2000


Quantum simulation and computing with Rydberg-interacting qubits
journal, May 2021

  • Morgado, M.; Whitlock, S.
  • AVS Quantum Science, Vol. 3, Issue 2
  • DOI: 10.1116/5.0036562

Synthetic three-dimensional atomic structures assembled atom by atom
journal, September 2018


Ionization of Rydberg atoms by standing-wave light fields
journal, December 2013

  • Anderson, Sarah E.; Raithel, Georg
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3967

Quantum error correction for beginners
journal, June 2013


Observation of collective excitation of two individual atoms in the Rydberg blockade regime
journal, January 2009

  • Gaëtan, Alpha; Miroshnychenko, Yevhen; Wilk, Tatjana
  • Nature Physics, Vol. 5, Issue 2
  • DOI: 10.1038/nphys1183

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.