DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ab Initio Prediction of the 4$$\mathrm{H}$$e($d, γ$)6$$\mathrm{L}$$i Big Bang Radiative Capture

Abstract

We report the rate at which helium (4He ) and deuterium (d) fuse together to produce lithium-6 (6Li) and a γ ray, 4$$\mathrm{H}$$e($d, γ$)6$$\mathrm{L}$$i, is a critical puzzle piece in resolving the discrepancy between big bang predictions and astronomical observations for the primordial abundance of 6Li . The accurate determination of this radiative capture rate requires the quantitative and predictive description of the fusion probability across the big bang energy window (30 keV ≲ E ≲ 400 keV), where measurements are hindered by low counting rates. We present first-principle (or, ab initio) predictions of the 4$$\mathrm{H}$$e($d, γ$)6$$\mathrm{L}$$i astrophysical S factor using validated nucleon-nucleon and three-nucleon interactions derived within the framework of chiral effective field theory. By employing the ab initio no-core shell model with continuum to describe 4He-d scattering dynamics and bound 6Li product on an equal footing, we accurately and consistently determine the contributions of the main electromagnetic transitions driving the radiative capture process. Our results reveal an enhancement of the capture probability below 100 keV owing to previously neglected magnetic dipole (M1) transitions and reduce by an average factor of 7 the uncertainty of the thermonuclear capture rate between 0.002 and 2 GK.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]
  1. Facility for Rare Isotope Beams, East Lansing, MI (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Université Paris-Saclay, Orsay (France)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. TRIUMF, Vancouver, BC (Canada); University of British Columbia, Vancouver, BC (Canada)
  5. TRIUMF, Vancouver, BC (Canada); Univ. of British Columbia, Vancouver, BC (Canada)
Publication Date:
Research Org.:
Michigan State Univ., East Lansing, MI (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Nuclear Physics (NP); USDOE Laboratory Directed Research and Development (LDRD) Program; National Research Council of Canada
OSTI Identifier:
1923671
Alternate Identifier(s):
OSTI ID: 1887494
Report Number(s):
LLNL-JRNL-832850
Journal ID: ISSN 0031-9007; SAPIN-2016-0003; SAPPJ-2019-00039; PGSD3-535536-2019; TRN: US2312452
Grant/Contract Number:  
SC0013617; AC52-07NA27344; SAPIN-2016-00033; SAPPJ-2019-00039; PGSD3-535536-2019
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 129; Journal Issue: 4; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; big bang nucleosynthesis; cluster models; nuclear many-body theory; nuclear reactions; radiative capture

Citation Formats

Hebborn, C., Hupin, G., Kravvaris, K., Quaglioni, S., Navrátil, P., and Gysbers, P. Ab Initio Prediction of the 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i Big Bang Radiative Capture. United States: N. p., 2022. Web. doi:10.1103/physrevlett.129.042503.
Hebborn, C., Hupin, G., Kravvaris, K., Quaglioni, S., Navrátil, P., & Gysbers, P. Ab Initio Prediction of the 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i Big Bang Radiative Capture. United States. https://doi.org/10.1103/physrevlett.129.042503
Hebborn, C., Hupin, G., Kravvaris, K., Quaglioni, S., Navrátil, P., and Gysbers, P. Wed . "Ab Initio Prediction of the 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i Big Bang Radiative Capture". United States. https://doi.org/10.1103/physrevlett.129.042503. https://www.osti.gov/servlets/purl/1923671.
@article{osti_1923671,
title = {Ab Initio Prediction of the 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i Big Bang Radiative Capture},
author = {Hebborn, C. and Hupin, G. and Kravvaris, K. and Quaglioni, S. and Navrátil, P. and Gysbers, P.},
abstractNote = {We report the rate at which helium (4He ) and deuterium (d) fuse together to produce lithium-6 (6Li) and a γ ray, 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i, is a critical puzzle piece in resolving the discrepancy between big bang predictions and astronomical observations for the primordial abundance of 6Li . The accurate determination of this radiative capture rate requires the quantitative and predictive description of the fusion probability across the big bang energy window (30 keV ≲ E ≲ 400 keV), where measurements are hindered by low counting rates. We present first-principle (or, ab initio) predictions of the 4$\mathrm{H}$e($d, γ$)6$\mathrm{L}$i astrophysical S factor using validated nucleon-nucleon and three-nucleon interactions derived within the framework of chiral effective field theory. By employing the ab initio no-core shell model with continuum to describe 4He-d scattering dynamics and bound 6Li product on an equal footing, we accurately and consistently determine the contributions of the main electromagnetic transitions driving the radiative capture process. Our results reveal an enhancement of the capture probability below 100 keV owing to previously neglected magnetic dipole (M1) transitions and reduce by an average factor of 7 the uncertainty of the thermonuclear capture rate between 0.002 and 2 GK.},
doi = {10.1103/physrevlett.129.042503},
journal = {Physical Review Letters},
number = 4,
volume = 129,
place = {United States},
year = {Wed Jul 20 00:00:00 EDT 2022},
month = {Wed Jul 20 00:00:00 EDT 2022}
}

Works referenced in this record:

The Primordial Lithium Problem
journal, November 2011


Elastic scattering of deuterons by alpha particles
journal, January 1968


NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>A</mml:mi><mml:mo><</mml:mo><mml:mn>16</mml:mn></mml:math>
journal, November 2013


Big bang nucleosynthesis: Present status
journal, February 2016


Theoretical study of the α + d Li 6 + γ astrophysical capture process in a three-body model
journal, July 2016


On the determination of the deuteron asymptotic D- to S-state wave function ratio by the pole-extrapolation method: Truncation errors
journal, April 1985


Big Bang 6 Li nucleosynthesis studied deep underground (LUNA collaboration)
journal, March 2017


Energy levels of light nuclei A=5, 6, 7
journal, September 2002


Lithium Isotopic Abundances in Metal‐poor Halo Stars
journal, June 2006

  • Asplund, Martin; Lambert, David L.; Nissen, Poul Erik
  • The Astrophysical Journal, Vol. 644, Issue 1
  • DOI: 10.1086/503538

High-energy breakup of Li 6 as a tool to study the Big Bang nucleosynthesis reaction H 2 ( α , γ ) Li 6
journal, December 2010


Few-nucleon forces from chiral Lagrangians
journal, June 1994


Primordial α + d Li 6 + γ reaction and second lithium puzzle
journal, April 2016


Determination of the 6 Li α + d asymptotic D - to S -state ratio by a restricted phase shift analysis
journal, February 1999


Unified Description of Li 6 Structure and Deuterium- He 4 Dynamics with Chiral Two- and Three-Nucleon Forces
journal, May 2015


Theoretical Models for Nuclear Astrophysics
conference, December 2004


Isospin-forbidden electric dipole capture and the α(d, γ)6Li reaction
journal, June 2018

  • Baye, D.; Tursunov, E. M.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 45, Issue 8
  • DOI: 10.1088/1361-6471/aacbfa

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory
journal, October 2003


Local three-nucleon interaction from chiral effective field theory
journal, November 2007


Astrophysical factor for the radiative capture reaction α+d6Li+γ
journal, December 1995

  • Mukhamedzhanov, A. M.; Schmitt, R. P.; Tribble, R. E.
  • Physical Review C, Vol. 52, Issue 6
  • DOI: 10.1103/PhysRevC.52.3483

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in Be 11 ?
journal, December 2016


Effective chiral lagrangians for nucleon-pion interactions and nuclear forces
journal, September 1991


Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest
journal, September 1986


Is it possible to observe an isoscalar E1-multipole in reactions?
journal, September 1990


Zero-energy determination of the astrophysical S factor and effective-range expansions
journal, January 2000


Electromagnetic transitions and radiative capture in the generator-coordinate method
journal, October 1983


Operator evolution for ab initio theory of light nuclei
journal, July 2014


Direct capture in the3+resonance ofH2(α,γ)6Li
journal, September 1994


Uncertainty quantification due to optical potentials in models for ( d , p ) reactions
journal, October 2018


He 3 ( α , γ ) Be 7 and H 3 ( α , γ ) Li 7 astrophysical S factors from the no-core shell model with continuum
journal, June 2016


Novel chiral Hamiltonian and observables in light and medium-mass nuclei
journal, January 2020


Observation of the Capture ReactionH2(α,γ)Li6and Its Role in Production ofLi6in the Big Bang
journal, December 1981


Exploring experimental conditions to reduce uncertainties in the optical potential
journal, December 2019


α-dcapture with formation ofLi6and the isoscalarE1 multipole
journal, June 1995


Deuteron-Helium Differential Scattering Cross Sections
journal, May 1955


First Direct Measurement of the H 2 ( α , γ ) Li 6 Cross Section at Big Bang Energies and the Primordial Lithium Problem
journal, July 2014


α + d → Li 6 + γ astrophysical S factor and its implications for Big Bang nucleosynthesis
journal, October 2017


Reexamination of the astrophysical S factor for the α + d 6 Li+ γ reaction
journal, May 2011

  • Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Irgaziev, B.  F.
  • Physical Review C, Vol. 83, Issue 5
  • DOI: 10.1103/PhysRevC.83.055805

Corrections to nuclear energies and radii in finite oscillator spaces
journal, September 2012


Unified ab initio approaches to nuclear structure and reactions
journal, April 2016


Six-body calculation of the α -deuteron radiative capture cross section
journal, January 2001


Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group
journal, August 2009


Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei
journal, May 2016


Ab initio predictions for polarized deuterium-tritium thermonuclear fusion
journal, January 2019


New constraints on D-state contributions to the trinucleon wave functions
journal, July 1989


Determination of the α 6 + d vertex constant (asymptotic coefficient) from the He 4 + d phase-shift analysis
journal, November 1993