DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS 2 Colloidal Nanocrystals

Abstract

Ternary I-III-VI 2 nanocrystals (NCs), such as AgInS 2 and CuInS 2 , are garnering interest as heavy-metal-free materials for photovoltaics, luminescent solar concentrators, LEDs, and bioimaging. The origin of the emission and absorption properties in this class of NCs is still a subject of debate. Recent theoretical and experimental studies revealed that the characteristic Stokes-shifted and long-lived luminescence of stoichiometric CuInS 2 NCs arises from the detailed structure of the valence band featuring two sublevels with different parity. The same valence band substructure is predicted to occur in AgInS 2 NCs, yet no experimental confirmation is available to date. Here, we use complementary spectroscopic, spectro-electrochemical, and magneto-optical investigations as a function of temperature to investigate the band structure and the excitonic recombination mechanisms in stoichiometric AgInS 2 NCs. Transient transmission measurements reveal the signatures of two subbands with opposite parity, and photoluminescence studies at cryogenic temperatures evidence a dark state emission due to enhanced exchange interaction, consistent with the behavior of stoichiometric CuInS 2 NCs. Lowering the temperature as well as applying reducing electrochemical potentials further suppress electron trapping, which represents the main nonradiative channel for exciton decay, leading to nearly 100% emission efficiency.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [3];  [4];  [5];  [5]; ORCiD logo [1];  [5];  [3]; ORCiD logo [6];  [7]; ORCiD logo [1]
  1. Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy
  2. Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
  3. Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
  4. Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy, Glass to Power SpA, Via Fortunato Zeni 8, 38068 RoveretoItaly
  5. Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science &, Engineering, Beijing Institute of Technology, Beijing 100081, China
  6. Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy, IFN-CNR, Piazza Leonardo da Vinci 32, 20133 MilanoItaly
  7. National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); Italian Ministry of Education, University and Research (MIUR); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1909317
Alternate Identifier(s):
OSTI ID: 1804374
Report Number(s):
LA-UR-21-21348
Journal ID: ISSN 2692-7640; 2021/1959321
Grant/Contract Number:  
89233218CNA000001; DMR-1644779; 2015WTW7J3; 51872030; 51631001
Resource Type:
Published Article
Journal Name:
Energy Material Advances
Additional Journal Information:
Journal Name: Energy Material Advances Journal Volume: 2021; Journal ID: ISSN 2692-7640
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; high magnetic field science

Citation Formats

Zaffalon, Matteo L., Pinchetti, Valerio, Camellini, Andrea, Vikulov, Sergey, Capitani, Chiara, Bai, Bing, Xu, Meng, Meinardi, Francesco, Zhang, Jiatao, Manna, Liberato, Zavelani-Rossi, Margherita, Crooker, Scott A., and Brovelli, Sergio. Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS 2 Colloidal Nanocrystals. United States: N. p., 2021. Web. doi:10.34133/2021/1959321.
Zaffalon, Matteo L., Pinchetti, Valerio, Camellini, Andrea, Vikulov, Sergey, Capitani, Chiara, Bai, Bing, Xu, Meng, Meinardi, Francesco, Zhang, Jiatao, Manna, Liberato, Zavelani-Rossi, Margherita, Crooker, Scott A., & Brovelli, Sergio. Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS 2 Colloidal Nanocrystals. United States. https://doi.org/10.34133/2021/1959321
Zaffalon, Matteo L., Pinchetti, Valerio, Camellini, Andrea, Vikulov, Sergey, Capitani, Chiara, Bai, Bing, Xu, Meng, Meinardi, Francesco, Zhang, Jiatao, Manna, Liberato, Zavelani-Rossi, Margherita, Crooker, Scott A., and Brovelli, Sergio. Mon . "Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS 2 Colloidal Nanocrystals". United States. https://doi.org/10.34133/2021/1959321.
@article{osti_1909317,
title = {Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS 2 Colloidal Nanocrystals},
author = {Zaffalon, Matteo L. and Pinchetti, Valerio and Camellini, Andrea and Vikulov, Sergey and Capitani, Chiara and Bai, Bing and Xu, Meng and Meinardi, Francesco and Zhang, Jiatao and Manna, Liberato and Zavelani-Rossi, Margherita and Crooker, Scott A. and Brovelli, Sergio},
abstractNote = {Ternary I-III-VI 2 nanocrystals (NCs), such as AgInS 2 and CuInS 2 , are garnering interest as heavy-metal-free materials for photovoltaics, luminescent solar concentrators, LEDs, and bioimaging. The origin of the emission and absorption properties in this class of NCs is still a subject of debate. Recent theoretical and experimental studies revealed that the characteristic Stokes-shifted and long-lived luminescence of stoichiometric CuInS 2 NCs arises from the detailed structure of the valence band featuring two sublevels with different parity. The same valence band substructure is predicted to occur in AgInS 2 NCs, yet no experimental confirmation is available to date. Here, we use complementary spectroscopic, spectro-electrochemical, and magneto-optical investigations as a function of temperature to investigate the band structure and the excitonic recombination mechanisms in stoichiometric AgInS 2 NCs. Transient transmission measurements reveal the signatures of two subbands with opposite parity, and photoluminescence studies at cryogenic temperatures evidence a dark state emission due to enhanced exchange interaction, consistent with the behavior of stoichiometric CuInS 2 NCs. Lowering the temperature as well as applying reducing electrochemical potentials further suppress electron trapping, which represents the main nonradiative channel for exciton decay, leading to nearly 100% emission efficiency.},
doi = {10.34133/2021/1959321},
journal = {Energy Material Advances},
number = ,
volume = 2021,
place = {United States},
year = {Mon Apr 05 00:00:00 EDT 2021},
month = {Mon Apr 05 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.34133/2021/1959321

Save / Share:

Works referenced in this record:

Investigation of AgInS2/ZnS Quantum Dots by Magnetic Circular Dichroism Spectroscopy
journal, November 2019

  • Gromova, Yulia; Sokolova, Anastasiia; Kurshanov, Danil
  • Materials, Vol. 12, Issue 21
  • DOI: 10.3390/ma12213616

Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI 2 Nanocrystals
journal, June 2017


Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots
journal, January 2015

  • Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don
  • Nanoscale, Vol. 7, Issue 12
  • DOI: 10.1039/C5NR00426H

Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets
journal, September 2015


Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies
journal, January 2019

  • Stroyuk, O.; Weigert, F.; Raevskaya, A.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 4
  • DOI: 10.1021/acs.jpcc.8b11835

Single-Particle Photoluminescence Spectra, Blinking, and Delayed Luminescence of Colloidal CuInS 2 Nanocrystals
journal, July 2016

  • Whitham, Patrick J.; Marchioro, Arianna; Knowles, Kathryn E.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 30
  • DOI: 10.1021/acs.jpcc.6b06425

Prospects of Nanoscience with Nanocrystals
journal, January 2015

  • Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506223h

Solution-Processed CuInS 2 -Based White QD-LEDs with Mixed Active Layer Architecture
journal, March 2017

  • Wepfer, Svenja; Frohleiks, Julia; Hong, A-Ra
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 12
  • DOI: 10.1021/acsami.6b15660

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
journal, August 2015

  • Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco
  • Nature Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1038/nnano.2015.178

Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS 2 and Its Solid Solutions
journal, January 2014

  • Torimoto, Tsukasa; Kameyama, Tatsuya; Kuwabata, Susumu
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402378x

Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants
journal, December 2017


Luminescence enhancement mechanisms of AgInS2/ZnS core/shell nanoparticles fabricated by suppressing quaternary alloying
journal, January 2020


Copper’s Role in the Photoluminescence of Ag 1– x Cu x InS 2 Nanocrystals, from Copper-Doped AgInS 2 ( x ∼ 0) to CuInS 2 ( x = 1)
journal, December 2018


Quantized Electronic Doping towards Atomically Controlled “Charge-Engineered” Semiconductor Nanocrystals
journal, January 2019


Energy transfer in aggregated CuInS 2 /ZnS core-shell quantum dots deposited as solid films
journal, December 2016

  • Gardelis, S.; Fakis, M.; Droseros, N.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 3
  • DOI: 10.1088/1361-6463/aa4e5d

Spectroscopic and Device Aspects of Nanocrystal Quantum Dots
journal, September 2016


Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications
journal, May 2016


Giant Stokes Shifts in AgInS 2 Nanocrystals with Trapped Charge Carriers
journal, May 2019

  • Baimuratov, Anvar S.; Martynenko, Irina V.; Baranov, Alexander V.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 26
  • DOI: 10.1021/acs.jpcc.9b03537

Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission
journal, February 2011

  • Li, Liang; Pandey, Anshu; Werder, Donald J.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1176-1179
  • DOI: 10.1021/ja108261h

Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry
journal, September 2017


Evaluating the potential of using quantum dots for monitoring electrical signals in neurons
journal, April 2018

  • Efros, Alexander L.; Delehanty, James B.; Huston, Alan L.
  • Nature Nanotechnology, Vol. 13, Issue 4
  • DOI: 10.1038/s41565-018-0107-1

Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity
journal, January 2020


Energy band structure of CuInS 2 and optical spectra of CuInS 2 nanocrystals
journal, July 2015


Transient Lattice Response upon Photoexcitation in CuInSe 2 Nanocrystals with Organic or Inorganic Surface Passivation
journal, September 2020

  • Harvey, Samantha M.; Houck, Daniel W.; Kirschner, Matthew S.
  • ACS Nano, Vol. 14, Issue 10
  • DOI: 10.1021/acsnano.0c05553

Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications
journal, January 2013

  • Aldakov, Dmitry; Lefrançois, Aurélie; Reiss, Peter
  • Journal of Materials Chemistry C, Vol. 1, Issue 24
  • DOI: 10.1039/c3tc30273c

Evidence for the Band‐Edge Exciton of CuInS 2 Nanocrystals Enables Record Efficient Large‐Area Luminescent Solar Concentrators
journal, November 2019

  • Anand, Abhinav; Zaffalon, Matteo L.; Gariano, Graziella
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906629

Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots
journal, October 2020


Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells
journal, May 2020


New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine
journal, September 2016


Synthesis and Photophysical Properties of Ternary I–III–VI AgInS 2 Nanocrystals: Intrinsic versus Surface States
journal, April 2011

  • Mao, Baodong; Chuang, Chi-Hung; Wang, Junwei
  • The Journal of Physical Chemistry C, Vol. 115, Issue 18
  • DOI: 10.1021/jp2011183

Single-particle spectroscopy of I–III–VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation
journal, January 2016

  • Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz
  • Nanoscale, Vol. 8, Issue 28
  • DOI: 10.1039/C6NR03950B

Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials
journal, July 2016


Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr 3 Perovskite Nanocrystals
journal, May 2017


Diluted Magnetic Semiconductors
journal, June 1988


Photoluminescence Properties and Its Origin of AgInS 2 Quantum Dots with Chalcopyrite Structure
journal, December 2010

  • Hamanaka, Yasushi; Ogawa, Tetsuya; Tsuzuki, Masakazu
  • The Journal of Physical Chemistry C, Vol. 115, Issue 5
  • DOI: 10.1021/jp110409q

From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters
journal, January 2018

  • Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 2
  • DOI: 10.1021/acs.jpclett.7b03037

Hydroxyl-Terminated CuInS 2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes
journal, February 2016


Highly Luminescent CuInS 2 /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging
journal, June 2009

  • Li, Liang; Daou, T. Jean; Texier, Isabelle
  • Chemistry of Materials, Vol. 21, Issue 12
  • DOI: 10.1021/cm900103b

Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping
journal, May 2016

  • Jo, Dae-Yeon; Kim, Daekyoung; Kim, Jong-Hoon
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 19
  • DOI: 10.1021/acsami.6b01763

Size-Dependent Photovoltaic Performance of CuInS 2 Quantum Dot-Sensitized Solar Cells
journal, November 2014

  • Jara, Danilo H.; Yoon, Seog Joon; Stamplecoskie, Kevin G.
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5040886

Evidence of Band-Edge Hole Levels Inversion in Spherical CuInS 2 Quantum Dots
journal, September 2018


Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size
journal, June 2020

  • Dzhagan, Volodymyr; Selyshchev, Oleksandr; Raievska, Oleksandra
  • The Journal of Physical Chemistry C, Vol. 124, Issue 28
  • DOI: 10.1021/acs.jpcc.0c03268

Tunable Photoelectrochemical Properties of Chalcopyrite AgInS 2 Nanoparticles Size-Controlled with a Photoetching Technique
journal, October 2012

  • Torimoto, Tsukasa; Tada, Masaki; Dai, Meilin
  • The Journal of Physical Chemistry C, Vol. 116, Issue 41
  • DOI: 10.1021/jp307305q

Controlling the Electronic Energy Structure of ZnS–AgInS 2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution
journal, October 2015

  • Kameyama, Tatsuya; Takahashi, Takuya; Machida, Takahiro
  • The Journal of Physical Chemistry C, Vol. 119, Issue 44
  • DOI: 10.1021/acs.jpcc.5b07994

Unusual Spectral Diffusion of Single CuInS 2 Quantum Dots Sheds Light on the Mechanism of Radiative Decay
journal, January 2021


Singlet–Triplet Splittings in the Luminescent Excited States of Colloidal Cu + :CdSe, Cu + :InP, and CuInS 2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons
journal, September 2015

  • Knowles, Kathryn E.; Nelson, Heidi D.; Kilburn, Troy B.
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b08547