DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling of the Liquid Sampling–Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field

Abstract

Just over a decade ago, a truly outside-of-the-box approach to isotope ratio mass spectrometry (IRMS) was undertaken between research groups at Clemson University and the Pacific Northwest National Laboratory. The original motivation dealt with projections as to whether or not microplasmas could be developed into practical elemental ionization sources, perhaps for transportable analysis applications. In particular, the use of the liquid sampling–atmospheric pressure glow discharge (LS-APGD) was pursued. Its interfacing to an ultra-high resolution Orbitrap platform, proved not only facile, but opened up a wealth of potential applications. Here, we lay out a historical, tutorial description of the interfacing and the evolution of the methodology regarding IRMS of uranium. Practical challenges and opportunities are described, which hopefully provide guidance to further applications in high resolution IRMS. It is hoped that, while detailed and lengthy, the didactic nature of the presentation provides experimental insights and tips, and also serves as an homage to our very good friend, Professor Gary M. Hieftje, whose scientific inspiration and comradery have been immeasurably important in our own careers.

Authors:
 [1]; ORCiD logo [2]
  1. Pacific Northwest National Laboratory, Richland, WA, USA
  2. Department of Chemistry, Clemson University, Clemson, SC, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1909042
Resource Type:
Published Article
Journal Name:
Applied Spectroscopy
Additional Journal Information:
Journal Name: Applied Spectroscopy Journal Volume: 77 Journal Issue: 8; Journal ID: ISSN 0003-7028
Publisher:
SAGE Publications
Country of Publication:
United States
Language:
English

Citation Formats

Koppenaal, David W., and Marcus, R. Kenneth. Coupling of the Liquid Sampling–Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field. United States: N. p., 2023. Web. doi:10.1177/00037028221147927.
Koppenaal, David W., & Marcus, R. Kenneth. Coupling of the Liquid Sampling–Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field. United States. https://doi.org/10.1177/00037028221147927
Koppenaal, David W., and Marcus, R. Kenneth. Thu . "Coupling of the Liquid Sampling–Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field". United States. https://doi.org/10.1177/00037028221147927.
@article{osti_1909042,
title = {Coupling of the Liquid Sampling–Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field},
author = {Koppenaal, David W. and Marcus, R. Kenneth},
abstractNote = {Just over a decade ago, a truly outside-of-the-box approach to isotope ratio mass spectrometry (IRMS) was undertaken between research groups at Clemson University and the Pacific Northwest National Laboratory. The original motivation dealt with projections as to whether or not microplasmas could be developed into practical elemental ionization sources, perhaps for transportable analysis applications. In particular, the use of the liquid sampling–atmospheric pressure glow discharge (LS-APGD) was pursued. Its interfacing to an ultra-high resolution Orbitrap platform, proved not only facile, but opened up a wealth of potential applications. Here, we lay out a historical, tutorial description of the interfacing and the evolution of the methodology regarding IRMS of uranium. Practical challenges and opportunities are described, which hopefully provide guidance to further applications in high resolution IRMS. It is hoped that, while detailed and lengthy, the didactic nature of the presentation provides experimental insights and tips, and also serves as an homage to our very good friend, Professor Gary M. Hieftje, whose scientific inspiration and comradery have been immeasurably important in our own careers.},
doi = {10.1177/00037028221147927},
journal = {Applied Spectroscopy},
number = 8,
volume = 77,
place = {United States},
year = {Thu Jan 12 00:00:00 EST 2023},
month = {Thu Jan 12 00:00:00 EST 2023}
}

Works referenced in this record:

Spectroscopic and electrical studies of a solution-cathode glow discharge
journal, January 2005

  • Webb, Michael R.; Andrade, Francisco J.; Gamez, Gerardo
  • Journal of Analytical Atomic Spectrometry, Vol. 20, Issue 11
  • DOI: 10.1039/b503961d

Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry
journal, July 2014

  • Zhang, Lynn X.; Manard, Benjamin T.; Kappel, Stefanie Konegger
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 29
  • DOI: 10.1007/s00216-014-7990-6

Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry
journal, January 1994

  • Cserfalvi, Tamas; Mezei, Pal
  • Journal of Analytical Atomic Spectrometry, Vol. 9, Issue 3, p. 345-349
  • DOI: 10.1039/ja9940900345

Beneficial Ion/Molecule Reactions in Elemental Mass Spectrometry
journal, January 1997


Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures
journal, November 2020

  • Hofmann, Amy E.; Chimiak, Laura; Dallas, Brooke
  • International Journal of Mass Spectrometry, Vol. 457
  • DOI: 10.1016/j.ijms.2020.116410

Exploring frontiers of orbitrap performance for long transients
journal, August 2021

  • Denisov, Eduard; Damoc, Eugen; Makarov, Alexander
  • International Journal of Mass Spectrometry, Vol. 466
  • DOI: 10.1016/j.ijms.2021.116607

Ambient desorption/ionization mass spectrometry using a liquid sampling–atmospheric glow discharge (LS-APGD) ionization source
journal, July 2013

  • Marcus, R. Kenneth; Burdette, Carolyn Q.; Manard, Benjamin T.
  • Analytical and Bioanalytical Chemistry, Vol. 405, Issue 25
  • DOI: 10.1007/s00216-013-7216-3

The Orbitrap: a new mass spectrometer
journal, January 2005

  • Hu, Qizhi; Noll, Robert J.; Li, Hongyan
  • Journal of Mass Spectrometry, Vol. 40, Issue 4
  • DOI: 10.1002/jms.856

Trace-Level Persistent Organic Pollutant Analysis with Gas-Chromatography Orbitrap Mass Spectrometry—Enhanced Performance by Complementary Acquisition and Processing of Time-Domain Data
journal, January 2020

  • Nagornov, Konstantin O.; Zennegg, Markus; Kozhinov, Anton N.
  • Journal of the American Society for Mass Spectrometry, Vol. 31, Issue 2
  • DOI: 10.1021/jasms.9b00032

Exploring the Potential of Electrospray-Orbitrap for Stable Isotope Analysis Using Nitrate as a Model
journal, June 2021


Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization Source for Elemental Mass Spectrometry
journal, April 2011

  • Marcus, R. Kenneth; Quarles, C. Derrick; Barinaga, Charles J.
  • Analytical Chemistry, Vol. 83, Issue 7
  • DOI: 10.1021/ac200098h

Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source
journal, January 2016

  • Zhang, Lynn X.; Marcus, R. Kenneth
  • Journal of Analytical Atomic Spectrometry, Vol. 31, Issue 1
  • DOI: 10.1039/C5JA00376H

Fundamental studies of electrolyte-as-cathode glow discharge-atomic emission spectrometry for the determination of trace metals in flowing water
journal, July 1998

  • Park, Yang; Ku, Soo; Hong, Sung
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, Issue 6-8, p. 1167-1179
  • DOI: 10.1016/S0584-8547(98)00154-2

Mass spectrometric analysis for nuclear safeguards
journal, January 2015

  • Boulyga, Sergei; Konegger-Kappel, Stefanie; Richter, Stephan
  • Journal of Analytical Atomic Spectrometry, Vol. 30, Issue 7
  • DOI: 10.1039/C4JA00491D

Determination of uranium isotope ratios using a liquid sampling atmospheric pressure glow discharge/Orbitrap mass spectrometer system
journal, August 2017

  • Hoegg, Edward D.; Marcus, R. Kenneth; Koppenaal, David W.
  • Rapid Communications in Mass Spectrometry, Vol. 31, Issue 18
  • DOI: 10.1002/rcm.7937

Liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit
journal, September 2011

  • Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.
  • Analytical and Bioanalytical Chemistry, Vol. 402, Issue 1
  • DOI: 10.1007/s00216-011-5359-7

Coupling of an atmospheric pressure microplasma ionization source with an Orbitrap Fusion Lumos Tribrid 1M mass analyzer for ultra-high resolution isotopic analysis of uranium
journal, January 2019

  • Hoegg, Edward D.; Godin, Simon; Szpunar, Joanna
  • Journal of Analytical Atomic Spectrometry, Vol. 34, Issue 7
  • DOI: 10.1039/C9JA00154A

An Atmospheric Pressure Glow Discharge Optical Emission Source for the Direct Sampling of Liquid Media
journal, July 2001

  • Marcus, R. Kenneth; Davis, W. Clay
  • Analytical Chemistry, Vol. 73, Issue 13
  • DOI: 10.1021/ac010158h

Improved uranium isotopic ratio determinations for the liquid sampling-atmospheric pressure glow discharge orbitrap mass spectrometer by use of moving average processing
journal, January 2022

  • Goodwin, Joseph V.; Manard, Benjamin T.; Ticknor, Brian W.
  • Journal of Analytical Atomic Spectrometry, Vol. 37, Issue 4
  • DOI: 10.1039/D1JA00374G

Concomitant ion effects on isotope ratio measurements with liquid sampling – atmospheric pressure glow discharge ion source Orbitrap mass spectrometry
journal, January 2018

  • Hoegg, Edward D.; Marcus, R. Kenneth; Hager, George J.
  • Journal of Analytical Atomic Spectrometry, Vol. 33, Issue 2
  • DOI: 10.1039/C7JA00308K

Project Vienna: A Novel Precell Mass Filter for Collision/Reaction Cell MC-ICPMS/MS
journal, July 2021


An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media
journal, January 2001

  • Davis, W. Clay; Marcus, R. Kenneth
  • Journal of Analytical Atomic Spectrometry, Vol. 16, Issue 9
  • DOI: 10.1039/b103437p

Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer
journal, April 2016

  • Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.
  • Journal of The American Society for Mass Spectrometry, Vol. 27, Issue 8
  • DOI: 10.1007/s13361-016-1402-4

Combined atomic and molecular (CAM) ionization with the liquid sampling‐atmospheric pressure glow discharge microplasma
journal, August 2021

  • Kenneth Marcus, R.; Hoegg, Edward D.; Hall, Katja A.
  • Mass Spectrometry Reviews
  • DOI: 10.1002/mas.21720

Improved Uranium Isotope Ratio Analysis in Liquid Sampling–Atmospheric Pressure Glow Discharge/Orbitrap FTMS Coupling through the Use of an External Data Acquisition System
journal, April 2021

  • Bills, Jacob R.; Nagornov, Konstantin O.; Kozhinov, Anton N.
  • Journal of the American Society for Mass Spectrometry, Vol. 32, Issue 5
  • DOI: 10.1021/jasms.1c00051

Performance of an inductively coupled plasma source ion trap mass spectrometer
journal, January 1994

  • Koppenaal, David W.; Barinaga, Charles J.; Smith, Monty R.
  • Journal of Analytical Atomic Spectrometry, Vol. 9, Issue 9
  • DOI: 10.1039/ja9940901053

Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications
journal, January 2017

  • Marcus, R. Kenneth; Manard, Benjamin T.; Quarles, C. Derrick
  • Journal of Analytical Atomic Spectrometry, Vol. 32, Issue 4
  • DOI: 10.1039/C7JA00008A

Initial Benchmarking of the Liquid Sampling-Atmospheric Pressure Glow Discharge-Orbitrap System Against Traditional Atomic Mass Spectrometry Techniques for Nuclear Applications
journal, October 2018

  • Hoegg, Edward D.; Manard, Benjamin T.; Wylie, E. Miller
  • Journal of The American Society for Mass Spectrometry, Vol. 30, Issue 2
  • DOI: 10.1007/s13361-018-2071-2

Spectrochemical Analysis by Using Discharge Devices with Solution Electrodes
journal, February 2009

  • Webb, Michael R.; Hieftje, Gary M.
  • Analytical Chemistry, Vol. 81, Issue 3
  • DOI: 10.1021/ac801561t

Isotope ratio characteristics and sensitivity for uranium determinations using a liquid sampling-atmospheric pressure glow discharge ion source coupled to an Orbitrap mass analyzer
journal, January 2016

  • Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.
  • Journal of Analytical Atomic Spectrometry, Vol. 31, Issue 12
  • DOI: 10.1039/C6JA00163G

Stable Isotope Analysis of Intact Oxyanions Using Electrospray Quadrupole-Orbitrap Mass Spectrometry
journal, January 2020


Mass spectrometric characteristics and preliminary figures of merit for polyaromatic hydrocarbons via the liquid sampling-atmospheric pressure glow discharge microplasma
journal, January 2020

  • Williams, Tyler J.; Bills, Jacob R.; Marcus, R. Kenneth
  • Journal of Analytical Atomic Spectrometry, Vol. 35, Issue 11
  • DOI: 10.1039/D0JA00373E

Intercomparison of the Radio-Chronometric Ages of Plutonium-Certified Reference Materials with Distinct Isotopic Compositions
journal, August 2019


High-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, September 1997

  • Milgram, K. Eric; White, Forest M.; Goodner, Kevin L.
  • Analytical Chemistry, Vol. 69, Issue 18
  • DOI: 10.1021/ac970126n

Plasma source ion trap mass spectrometry: Enhanced abundance sensitivity by resonant ejection of atomic ions
journal, November 1996

  • Eiden, G. C.; Barinaga, C. J.; Koppenaal, D. W.
  • Journal of the American Society for Mass Spectrometry, Vol. 7, Issue 11
  • DOI: 10.1016/S1044-0305(96)00075-X

Characterization of the Spectral Accuracy of an Orbitrap Mass Analyzer Using Isotope Ratio Mass Spectrometry
journal, January 2018


A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell
journal, November 1999

  • Tanner, Scott D.; Baranov, Vladimir I.
  • Journal of the American Society for Mass Spectrometry, Vol. 10, Issue 11
  • DOI: 10.1016/S1044-0305(99)00081-1

Reaction cells and collision cells for ICP-MS: a tutorial review
journal, September 2002

  • Tanner, Scott D.; Baranov, Vladimir I.; Bandura, Dmitry R.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 57, Issue 9
  • DOI: 10.1016/S0584-8547(02)00069-1

High-Throughput Elemental Analysis of Small Aqueous Samples by Emission Spectrometry with a Compact, Atmospheric-Pressure Solution-Cathode Glow Discharge
journal, October 2007

  • Webb, Michael R.; Andrade, Francisco J.; Hieftje, Gary M.
  • Analytical Chemistry, Vol. 79, Issue 20
  • DOI: 10.1021/ac0707885

Reaction chemistry and collisional processes in multipole devices for resolving isobaric interferences in ICP-MS
journal, July 2001

  • Bandura, D. R.; Baranov, V. I.; Tanner, S. D.
  • Fresenius' Journal of Analytical Chemistry, Vol. 370, Issue 5
  • DOI: 10.1007/s002160100869

Operating mechanism of the electrolyte cathode atmospheric glow discharge
journal, July 1996

  • Cserfalvi, T.; Mezei, P.
  • Analytical and Bioanalytical Chemistry, Vol. 355, Issue 7-8
  • DOI: 10.1007/s0021663550813

Orbitrap journey: taming the ion rings
journal, September 2019