DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology

Abstract

Understanding the composition and structure of amorphous precursor phases is fundamental for elucidating two-step crystallization mechanisms and designing shape- and size-controlled nanomaterials. However, that understanding is largely lacking for metal–organic framework compounds despite their growing significance as functional materials. Here, in this study, we report the crystallization of zeolite imidazolate frameworks-8 (ZIF-8, Zn(C4H5N2)2) via an amorphous ZIF (am-ZIF) solid precursor phase with a rough stoichiometric composition of Zn(C4H5N2)1.78(C4H6N2)0.17(CH3COO)0.22. The formation of am-ZIF is attributed to the incomplete deprotonation of 2-Methylimidazole (HmIm) and the involvement of the hydrogen bond between CH3COO– and –HN, which can further transform into the dense Dia(Zn) structure with a diamondoid crystal topology in pure water. Taking am-ZIF as a precursor, the tunable dissolution and recrystallization kinetics of am-ZIF into ZIF-8, due to the addition of EtOH and CTAB, allows the selective fabrication of dodecahedral, cubic, and hollow ZIF-8. Overall, an in-depth understanding of the differences in composition and structure of am-ZIF from ZIF-8 and the resulting crystallization kinetics suggests a novel approach to designing metal–organic frameworks with controlled crystal morphology.

Authors:
 [1];  [1];  [2];  [1]; ORCiD logo [3];  [4];  [1];  [5]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environment Directorate
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  4. Zhejiang Univ., Hangzhou (China)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1906121
Alternate Identifier(s):
OSTI ID: 1960859
Report Number(s):
PNNL-SA-177668
Journal ID: ISSN 0022-0248
Grant/Contract Number:  
AC05-76RL01830; AC05-76RLO1830; KC020105-FWP12152
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Crystal Growth
Additional Journal Information:
Journal Volume: 603; Journal ID: ISSN 0022-0248
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; A1. Amorphous phase; A1. Recrystallization; A1. Nucleation; A1. Crystal morphology; B1. Nanomaterials; B1. Zeolite imidazolate frameworks-8

Citation Formats

Jin, Biao, Wang, Suyun, Boglaienko, Daria, Zhang, Zihao, Zhao, Qian, Ma, Xiaoming, Zhang, Xin, and De Yoreo, James J. The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology. United States: N. p., 2022. Web. doi:10.1016/j.jcrysgro.2022.126989.
Jin, Biao, Wang, Suyun, Boglaienko, Daria, Zhang, Zihao, Zhao, Qian, Ma, Xiaoming, Zhang, Xin, & De Yoreo, James J. The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology. United States. https://doi.org/10.1016/j.jcrysgro.2022.126989
Jin, Biao, Wang, Suyun, Boglaienko, Daria, Zhang, Zihao, Zhao, Qian, Ma, Xiaoming, Zhang, Xin, and De Yoreo, James J. Wed . "The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology". United States. https://doi.org/10.1016/j.jcrysgro.2022.126989. https://www.osti.gov/servlets/purl/1906121.
@article{osti_1906121,
title = {The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology},
author = {Jin, Biao and Wang, Suyun and Boglaienko, Daria and Zhang, Zihao and Zhao, Qian and Ma, Xiaoming and Zhang, Xin and De Yoreo, James J.},
abstractNote = {Understanding the composition and structure of amorphous precursor phases is fundamental for elucidating two-step crystallization mechanisms and designing shape- and size-controlled nanomaterials. However, that understanding is largely lacking for metal–organic framework compounds despite their growing significance as functional materials. Here, in this study, we report the crystallization of zeolite imidazolate frameworks-8 (ZIF-8, Zn(C4H5N2)2) via an amorphous ZIF (am-ZIF) solid precursor phase with a rough stoichiometric composition of Zn(C4H5N2)1.78(C4H6N2)0.17(CH3COO)0.22. The formation of am-ZIF is attributed to the incomplete deprotonation of 2-Methylimidazole (HmIm) and the involvement of the hydrogen bond between CH3COO– and –HN, which can further transform into the dense Dia(Zn) structure with a diamondoid crystal topology in pure water. Taking am-ZIF as a precursor, the tunable dissolution and recrystallization kinetics of am-ZIF into ZIF-8, due to the addition of EtOH and CTAB, allows the selective fabrication of dodecahedral, cubic, and hollow ZIF-8. Overall, an in-depth understanding of the differences in composition and structure of am-ZIF from ZIF-8 and the resulting crystallization kinetics suggests a novel approach to designing metal–organic frameworks with controlled crystal morphology.},
doi = {10.1016/j.jcrysgro.2022.126989},
journal = {Journal of Crystal Growth},
number = ,
volume = 603,
place = {United States},
year = {Wed Nov 16 00:00:00 EST 2022},
month = {Wed Nov 16 00:00:00 EST 2022}
}

Works referenced in this record:

Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures
journal, June 2020

  • Von Euw, Stanislas; Azaïs, Thierry; Manichev, Viacheslav
  • Journal of the American Chemical Society, Vol. 142, Issue 29
  • DOI: 10.1021/jacs.0c05591

Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein–Metal–Organic Frameworks
journal, January 2020

  • Ogata, Alana F.; Rakowski, Alexander M.; Carpenter, Brooke P.
  • Journal of the American Chemical Society, Vol. 142, Issue 3
  • DOI: 10.1021/jacs.9b11371

Amorphous Intermediate Derivative from ZIF‐67 and Its Outstanding Electrocatalytic Activity
journal, December 2019


Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate
journal, September 2010

  • Radha, A. V.; Forbes, T. Z.; Killian, C. E.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 38
  • DOI: 10.1073/pnas.1009959107

Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages
journal, January 2021

  • Wang, Wenhui; Yan, Hongwei; Anand, Utkarsh
  • Journal of the American Chemical Society, Vol. 143, Issue 4
  • DOI: 10.1021/jacs.0c10285

Fast Nucleation and Growth of ZIF-8 Nanocrystals Monitored by Time-Resolved In Situ Small-Angle and Wide-Angle X-Ray Scattering
journal, July 2011

  • Cravillon, Janosch; Schröder, Christian A.; Nayuk, Roman
  • Angewandte Chemie International Edition, Vol. 50, Issue 35
  • DOI: 10.1002/anie.201102071

Additives: Their Influence on the Humidity- and Pressure-Induced Crystallization of Amorphous CaCO3
journal, April 2020


Amorphous CaCO 3 : Influence of the Formation Time on Its Degree of Hydration and Stability
journal, September 2018

  • Du, Huachuan; Steinacher, Mathias; Borca, Camelia
  • Journal of the American Chemical Society, Vol. 140, Issue 43
  • DOI: 10.1021/jacs.8b08298

Aqueous-System-Enabled Spray-Drying Technique for the Synthesis of Hollow Polycrystalline ZIF-8 MOF Particles
journal, October 2017


Probing the effects of polymers on the early stages of calcium carbonate formation by stoichiometric co-titration
journal, January 2022

  • Schodder, Philipp I.; Gindele, Maxim B.; Ott, Andreas
  • Physical Chemistry Chemical Physics, Vol. 24, Issue 17
  • DOI: 10.1039/D1CP05606A

Revelation of the Molecular Assembly of the Nanoporous Metal Organic Framework ZIF-8
journal, August 2011

  • Moh, Pak Y.; Cubillas, Pablo; Anderson, Michael W.
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja205900f

Packaging and delivering enzymes by amorphous metal-organic frameworks
journal, November 2019


Core–shell crystalline ZIF-67@amorphous ZIF for high-performance supercapacitors
journal, September 2020


Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants
journal, January 2011

  • Pan, Yichang; Heryadi, Dodi; Zhou, Feng
  • CrystEngComm, Vol. 13, Issue 23
  • DOI: 10.1039/c1ce05780d

Short-Range Structure of Amorphous Calcium Hydrogen Phosphate
journal, April 2019

  • Lu, Bing-Qiang; Garcia, Natalya A.; Chevrier, Daniel M.
  • Crystal Growth & Design, Vol. 19, Issue 5
  • DOI: 10.1021/acs.cgd.9b00274

Observing the Growth of Metal–Organic Frameworks by in Situ Liquid Cell Transmission Electron Microscopy
journal, June 2015

  • Patterson, Joseph P.; Abellan, Patricia; Denny, Michael S.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b00817

Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy
journal, August 2021


Water Dynamics from THz Spectroscopy Reveal the Locus of a Liquid-Liquid Binodal Limit in Aqueous CaCO 3 Solutions
journal, December 2016

  • Sebastiani, Federico; Wolf, Stefan L. P.; Born, Benjamin
  • Angewandte Chemie International Edition, Vol. 56, Issue 2
  • DOI: 10.1002/anie.201610554

Pressure-induced amorphization, mechanical and electronic properties of zeolitic imidazolate framework (ZIF-8)
journal, January 2020


SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control
journal, September 2015

  • Kumar, Manjesh; Luo, Helen; Román-Leshkov, Yuriy
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b07477

On Grounds of the Memory Effect in Amorphous and Crystalline Apatite: Kinetics of Crystallization and Biological Response
journal, April 2018

  • Uskoković, Vuk; Tang, Sean; Wu, Victoria M.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 17
  • DOI: 10.1021/acsami.8b02520

Tuning Metal–Organic Framework Nanocrystal Shape through Facet-Dependent Coordination
journal, January 2020


Flexible and Transferable ab Initio Force Field for Zeolitic Imidazolate Frameworks: ZIF-FF
journal, March 2019


Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature dependent measurements
journal, January 2017

  • Xu, Ben; Mei, Yingjie; Xiao, Zhenyu
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 40
  • DOI: 10.1039/C7CP04694D

Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core–shell type metal–organic frameworks and their sorption properties
journal, January 2014

  • Lee, Hee Jung; Choi, Sora; Oh, Moonhyun
  • Chemical Communications, Vol. 50, Issue 34
  • DOI: 10.1039/c4cc00943f

Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites
journal, January 2018


Topological‐Distortion‐Driven Amorphous Spherical Metal‐Organic Frameworks for High‐Quality Single‐Mode Microlasers
journal, February 2021

  • Gao, Zhenhua; Xu, Baoyuan; Fan, Yuqing
  • Angewandte Chemie International Edition, Vol. 60, Issue 12
  • DOI: 10.1002/anie.202014033

Simulation of Calcium Phosphate Prenucleation Clusters in Aqueous Solution: Association beyond Ion Pairing
journal, September 2019

  • Garcia, Natalya A.; Malini, Riccardo Innocenti; Freeman, Colin L.
  • Crystal Growth & Design, Vol. 19, Issue 11
  • DOI: 10.1021/acs.cgd.9b00889

Control of Metal–Organic Framework Crystallization by Metastable Intermediate Pre‐equilibrium Species
journal, January 2019

  • Yeung, Hamish H. ‐M.; Sapnik, Adam F.; Massingberd‐Mundy, Felicity
  • Angewandte Chemie International Edition, Vol. 58, Issue 2
  • DOI: 10.1002/anie.201810039

The nano- and meso-scale structure of amorphous calcium carbonate
journal, April 2022


Amorphous Metal–Organic Frameworks
journal, April 2014

  • Bennett, Thomas D.; Cheetham, Anthony K.
  • Accounts of Chemical Research, Vol. 47, Issue 5
  • DOI: 10.1021/ar5000314

Three-step nucleation of metal–organic framework nanocrystals
journal, March 2021

  • Liu, Xiangwen; Chee, See Wee; Raj, Sanoj
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 10
  • DOI: 10.1073/pnas.2008880118

Defect Creation in HKUST-1 via Molecular Imprinting: Attaining Anionic Framework Property and Mesoporosity for Cation Exchange Applications
journal, September 2017

  • Tan, Ying Chuan; Zeng, Hua Chun
  • Advanced Functional Materials, Vol. 27, Issue 42
  • DOI: 10.1002/adfm.201703765

Mineral Formation in the Larval Zebrafish Tail Bone Occurs via an Acidic Disordered Calcium Phosphate Phase
journal, October 2016

  • Akiva, Anat; Kerschnitzki, Michael; Pinkas, Iddo
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b09442

Nanoscale Transforming Mineral Phases in Fresh Nacre
journal, October 2015

  • DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b07931

Insights into the Molecular Assembly of Zeolitic Imidazolate Frameworks by ESI-MS
journal, April 2015