DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1 H NMR Spectroscopy

Abstract

Molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and 1H NMR spectroscopy were performed to gain a complementary understanding of the concentrated Li-ion electrolyte system, lithium bis(trifluoromethanesulfonyl)imide (Li[TFSI]) dissolved in tetraglyme. The computational methods provided the concentration dependence of differing solvation structure motifs by reference to changes in the corresponding NMR spectra. By combining both the computational and experimental methodologies, we show that the various solvation structures, dominated by the coordination between the tetraglyme (G4) solvent and lithium cation, directly influence the chemical shift separation of resonances in the 1H NMR spectra of the solvent. Thus, the 1H NMR spectra can be used to predict the fraction of tetraglyme involved in the solvation process, with quantitative agreement with solvation fraction predictions from MD simulation snapshots. Overall, our results demonstrate the reliability of a hybrid computational and experimental methodology to understand the solvation structure and hence transport mechanism of LiTFSI-G4 electrolytes in the low concentration region.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]
  1. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
  2. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States, Materials Sciences Division and Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH); National Science Foundation (NSF)
OSTI Identifier:
1898467
Alternate Identifier(s):
OSTI ID: 1987505
Grant/Contract Number:  
AC02-05CH11231; S10OD023532; 2018784
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Name: Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry Journal Volume: 126 Journal Issue: 47; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; cations; electrolytes; molecules; solvation; solvents

Citation Formats

Im, Julia, Halat, David M., Fang, Chao, Hickson, Darby T., Wang, Rui, Balsara, Nitash P., and Reimer, Jeffrey A. Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1 H NMR Spectroscopy. United States: N. p., 2022. Web. doi:10.1021/acs.jpcb.2c06415.
Im, Julia, Halat, David M., Fang, Chao, Hickson, Darby T., Wang, Rui, Balsara, Nitash P., & Reimer, Jeffrey A. Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1 H NMR Spectroscopy. United States. https://doi.org/10.1021/acs.jpcb.2c06415
Im, Julia, Halat, David M., Fang, Chao, Hickson, Darby T., Wang, Rui, Balsara, Nitash P., and Reimer, Jeffrey A. Wed . "Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1 H NMR Spectroscopy". United States. https://doi.org/10.1021/acs.jpcb.2c06415.
@article{osti_1898467,
title = {Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1 H NMR Spectroscopy},
author = {Im, Julia and Halat, David M. and Fang, Chao and Hickson, Darby T. and Wang, Rui and Balsara, Nitash P. and Reimer, Jeffrey A.},
abstractNote = {Molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and 1H NMR spectroscopy were performed to gain a complementary understanding of the concentrated Li-ion electrolyte system, lithium bis(trifluoromethanesulfonyl)imide (Li[TFSI]) dissolved in tetraglyme. The computational methods provided the concentration dependence of differing solvation structure motifs by reference to changes in the corresponding NMR spectra. By combining both the computational and experimental methodologies, we show that the various solvation structures, dominated by the coordination between the tetraglyme (G4) solvent and lithium cation, directly influence the chemical shift separation of resonances in the 1H NMR spectra of the solvent. Thus, the 1H NMR spectra can be used to predict the fraction of tetraglyme involved in the solvation process, with quantitative agreement with solvation fraction predictions from MD simulation snapshots. Overall, our results demonstrate the reliability of a hybrid computational and experimental methodology to understand the solvation structure and hence transport mechanism of LiTFSI-G4 electrolytes in the low concentration region.},
doi = {10.1021/acs.jpcb.2c06415},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 47,
volume = 126,
place = {United States},
year = {Wed Nov 16 00:00:00 EST 2022},
month = {Wed Nov 16 00:00:00 EST 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpcb.2c06415

Save / Share:

Works referenced in this record:

Change from Glyme Solutions to Quasi-ionic Liquids for Binary Mixtures Consisting of Lithium Bis(trifluoromethanesulfonyl)amide and Glymes
journal, August 2011

  • Yoshida, Kazuki; Tsuchiya, Mizuho; Tachikawa, Naoki
  • The Journal of Physical Chemistry C, Vol. 115, Issue 37
  • DOI: 10.1021/jp206881t

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Solvation of Lithium Salts in Protic Ionic Liquids: A Molecular Dynamics Study
journal, January 2014

  • Méndez-Morales, Trinidad; Carrete, Jesús; Cabeza, Óscar
  • The Journal of Physical Chemistry B, Vol. 118, Issue 3
  • DOI: 10.1021/jp410090f

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Deuteron magnetic resonance study of glyceline deep eutectic solvents: Selective detection of choline and glycerol dynamics
journal, May 2022

  • Hinz, Yannik; Böhmer, Roland
  • The Journal of Chemical Physics, Vol. 156, Issue 19
  • DOI: 10.1063/5.0088290

LINCS: A linear constraint solver for molecular simulations
journal, September 1997


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Connectivity-Altering Monte Carlo Simulations of the End Group Effects on Volumetric Properties for Poly(ethylene oxide)
journal, September 2004

  • Wick, Collin D.; Theodorou, Doros N.
  • Macromolecules, Vol. 37, Issue 18
  • DOI: 10.1021/ma049193r

Solvate ionic liquids based on lithium bis(trifluoromethanesulfonyl)imide–glyme systems: coordination in MD simulations with scaled charges
journal, January 2020

  • Thum, Andreas; Heuer, Andreas; Shimizu, Karina
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
  • DOI: 10.1039/C9CP04947A

Ionic Liquids—New “Solutions” for Transition Metal Catalysis
journal, November 2000


Enhanced Lithium Transference Numbers in Ionic Liquid Electrolytes
journal, October 2008

  • Frömling, T.; Kunze, M.; Schönhoff, M.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 41
  • DOI: 10.1021/jp804097j

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Electric-Field-Induced Spatially Dynamic Heterogeneity of Solvent Motion and Cation Transference in Electrolytes
journal, May 2022


Molecular Dynamics Simulations and Vibrational Spectroscopic Studies of Local Structure in Tetraglyme:Sodium Triflate (CH 3 O(CH 2 CH 2 O) 4 CH 3 :NaCF 3 SO 3 ) Solutions
journal, May 2002

  • Dong, Haitao; Hyun, Jin-Kee; Rhodes, Christopher P.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 18
  • DOI: 10.1021/jp013914w

Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes
journal, April 2022

  • Wichmann, Lennart; Brinkmann, Jan‐Paul; Luo, Mingzeng
  • Batteries & Supercaps, Vol. 5, Issue 7
  • DOI: 10.1002/batt.202200075

Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids
journal, July 2010

  • Tamura, Takashi; Yoshida, Kazuki; Hachida, Takeshi
  • Chemistry Letters, Vol. 39, Issue 7
  • DOI: 10.1246/cl.2010.753

Molecular Force Field for Ionic Liquids IV:  Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations; Alkylsulfonate and Alkylsulfate Anions
journal, April 2008

  • Canongia Lopes, José N.; Pádua, Agílio A. H.; Shimizu, Karina
  • The Journal of Physical Chemistry B, Vol. 112, Issue 16
  • DOI: 10.1021/jp800281e

Brønsted acid–base ionic liquids for fuel cell electrolytes
journal, January 2007

  • Nakamoto, Hirofumi; Watanabe, Masayoshi
  • Chem. Commun., Issue 24
  • DOI: 10.1039/B618953A

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Different roles of ionic liquids in lithium batteries
journal, December 2016


Criteria for solvate ionic liquids
journal, January 2014

  • Mandai, Toshihiko; Yoshida, Kazuki; Ueno, Kazuhide
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 19, p. 8761-8772
  • DOI: 10.1039/c4cp00461b

Spotlight on ionic liquids
journal, March 2010

  • Castner, Edward W.; Wishart, James F.
  • The Journal of Chemical Physics, Vol. 132, Issue 12
  • DOI: 10.1063/1.3373178

Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
journal, August 2012

  • Hanwell, Marcus D.; Curtis, Donald E.; Lonie, David C.
  • Journal of Cheminformatics, Vol. 4, Issue 1
  • DOI: 10.1186/1758-2946-4-17

Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications
journal, November 2007

  • Angell, C. Austen; Byrne, Nolene; Belieres, Jean-Philippe
  • Accounts of Chemical Research, Vol. 40, Issue 11
  • DOI: 10.1021/ar7001842

Electrolyte Solvation and Ionic Association. VII. Correlating Raman Spectroscopic Data with Solvate Species
journal, July 2020

  • Henderson, Wesley A.; Seo, Daniel M.; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 167, Issue 11
  • DOI: 10.1149/1945-7111/aba44a

Li + Transport Mechanism in Oligo(Ethylene Oxide)s Compared to Carbonates
journal, April 2007


Glyme–Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids?
journal, August 2012

  • Ueno, Kazuhide; Yoshida, Kazuki; Tsuchiya, Mizuho
  • The Journal of Physical Chemistry B, Vol. 116, Issue 36
  • DOI: 10.1021/jp307378j

S PATIALLY H ETEROGENEOUS D YNAMICS IN S UPERCOOLED L IQUIDS
journal, October 2000