DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications

Abstract

Lepidocrocite-type titanates that reversibly intercalate sodium ions at low potentials (~0.6 V vs Na/Na+) are promising anode candidates for sodium-ion batteries. However, large amounts of carbon additives are often used to improve their electrical conductivity and overcome poor cycling performance in the electrode composites. To ameliorate electronic transport issues of lepidocrocite titanate (K0.8Ti1.73Li0.27O4, KTL) in sodium-ion batteries, we have designed and synthesized heterostructures of exfoliated lepidocrocite-type titanium oxide (LTO) nanosheets with alternating carbon layers via a solution-based self-assembly approach. Positively charged dopamine (Dopa) was used as the carbon precursor and intercalated between negatively charged exfoliated titania nanosheets through electrostatic interaction. Dopa-intercalated LTO was then annealed under argon to form conductive carbon layers between titania sheets. The carbon content in the heterostructures was controlled by modifying the self-assembly conditions (i.e., pH, stirring duration, and Dopa-to-LTO ratio). Electrodes were prepared using carbonized heterostructures (LTO-C) without adding more carbon to the composites and tested in sodium half-cell configurations. Further, higher capacities and improved capacity retention over 250 cycles and lower impedance were observed, as the carbon content of LTO-C heterostructures was increased from 0% (LTO nanosheets) to 30%. These results indicate that the self-assembly approach for 2D heterostructured electrode materials is a promisingmore » strategy to overcome electronic transport limitations of layered transition-metal oxides and improve their electrochemical performance for next-generation energy storage applications.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  3. Stony Brook Univ., NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1895070
Alternate Identifier(s):
OSTI ID: 1894065
Report Number(s):
BNL-223639-2022-JAAM
Journal ID: ISSN 2574-0970
Grant/Contract Number:  
SC0012704; SC0012673; AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Nano Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2574-0970
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium-ion batteries; lepidocrocite titanate; anodes; dopamine; self-assembly

Citation Formats

Barim, Gözde, Dhall, Rohan, Arca, Elisabetta, Kuykendall, Tevye R., Yin, Wei, Takeuchi, Kenneth J., Takeuchi, Esther S., Marschilok, Amy C., and Doeff, Marca M. Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications. United States: N. p., 2021. Web. doi:10.1021/acsanm.1c03449.
Barim, Gözde, Dhall, Rohan, Arca, Elisabetta, Kuykendall, Tevye R., Yin, Wei, Takeuchi, Kenneth J., Takeuchi, Esther S., Marschilok, Amy C., & Doeff, Marca M. Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications. United States. https://doi.org/10.1021/acsanm.1c03449
Barim, Gözde, Dhall, Rohan, Arca, Elisabetta, Kuykendall, Tevye R., Yin, Wei, Takeuchi, Kenneth J., Takeuchi, Esther S., Marschilok, Amy C., and Doeff, Marca M. Tue . "Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications". United States. https://doi.org/10.1021/acsanm.1c03449. https://www.osti.gov/servlets/purl/1895070.
@article{osti_1895070,
title = {Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications},
author = {Barim, Gözde and Dhall, Rohan and Arca, Elisabetta and Kuykendall, Tevye R. and Yin, Wei and Takeuchi, Kenneth J. and Takeuchi, Esther S. and Marschilok, Amy C. and Doeff, Marca M.},
abstractNote = {Lepidocrocite-type titanates that reversibly intercalate sodium ions at low potentials (~0.6 V vs Na/Na+) are promising anode candidates for sodium-ion batteries. However, large amounts of carbon additives are often used to improve their electrical conductivity and overcome poor cycling performance in the electrode composites. To ameliorate electronic transport issues of lepidocrocite titanate (K0.8Ti1.73Li0.27O4, KTL) in sodium-ion batteries, we have designed and synthesized heterostructures of exfoliated lepidocrocite-type titanium oxide (LTO) nanosheets with alternating carbon layers via a solution-based self-assembly approach. Positively charged dopamine (Dopa) was used as the carbon precursor and intercalated between negatively charged exfoliated titania nanosheets through electrostatic interaction. Dopa-intercalated LTO was then annealed under argon to form conductive carbon layers between titania sheets. The carbon content in the heterostructures was controlled by modifying the self-assembly conditions (i.e., pH, stirring duration, and Dopa-to-LTO ratio). Electrodes were prepared using carbonized heterostructures (LTO-C) without adding more carbon to the composites and tested in sodium half-cell configurations. Further, higher capacities and improved capacity retention over 250 cycles and lower impedance were observed, as the carbon content of LTO-C heterostructures was increased from 0% (LTO nanosheets) to 30%. These results indicate that the self-assembly approach for 2D heterostructured electrode materials is a promising strategy to overcome electronic transport limitations of layered transition-metal oxides and improve their electrochemical performance for next-generation energy storage applications.},
doi = {10.1021/acsanm.1c03449},
journal = {ACS Applied Nano Materials},
number = 1,
volume = 5,
place = {United States},
year = {Tue Dec 21 00:00:00 EST 2021},
month = {Tue Dec 21 00:00:00 EST 2021}
}

Works referenced in this record:

Exfoliation and Restacking of Lepidocrocite-type Layered Titanates Studied by Small-Angle X-ray Scattering
journal, November 2010

  • Besselink, Rogier; Stawski, Tomasz M.; Castricum, Hessel L.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 49
  • DOI: 10.1021/jp108687q

Hydrogenation engineering of bimetallic Ag–Cu-modified-titania photocatalysts for production of hydrogen
journal, April 2022


Self-Assembly-Induced Alternately Stacked Single-Layer MoS 2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries
journal, January 2016

  • Zhao, Chenyang; Wang, Xu; Kong, Junhua
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b11492

Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries
journal, December 2018


Na2Ti3O7: an intercalation based anode for sodium-ion battery applications
journal, January 2013

  • Rudola, Ashish; Saravanan, Kuppan; Mason, Chad W.
  • Journal of Materials Chemistry A, Vol. 1, Issue 7
  • DOI: 10.1039/c2ta01057g

Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion
journal, January 2018

  • Das, Pratteek; Fu, Qiang; Bao, Xinhe
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/c8ta04618b

The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment
journal, April 2014

  • Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04584

Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries
journal, October 2018

  • Pan, Kanghua; Lu, Haiyan; Zhong, Faping
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 46
  • DOI: 10.1021/acsami.8b13236

Local mobility in electrochemically inactive sodium in hard carbon anodes after the first cycle
journal, January 2020

  • Jensen, Anders C. S.; Olsson, Emilia; Au, Heather
  • Journal of Materials Chemistry A, Vol. 8, Issue 2
  • DOI: 10.1039/c9ta10113f

High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage
journal, July 2020


Unusual Crystallization Behaviors of Anatase Nanocrystallites from a Molecularly Thin Titania Nanosheet and Its Stacked Forms:  Increase in Nucleation Temperature and Oriented Growth
journal, December 2006

  • Fukuda, Katsutoshi; Ebina, Yasuo; Shibata, Tatsuo
  • Journal of the American Chemical Society, Vol. 129, Issue 1
  • DOI: 10.1021/ja0668116

Optimization of nonatitanate electrodes for sodium-ion batteries
journal, January 2020

  • Alvarado, Judith; Barim, Gözde; Quilty, Calvin D.
  • Journal of Materials Chemistry A, Vol. 8, Issue 38
  • DOI: 10.1039/d0ta07561b

Genuine Unilamellar Metal Oxide Nanosheets Confined in a Superlattice-like Structure for Superior Energy Storage
journal, January 2018


Two-dimensional heterostructures for energy storage
journal, June 2017


XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction
journal, August 2018


Determination of Ti coordination from pre-edge peaks in Ti K -edge XANES
journal, December 2007


Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications
journal, January 2020

  • Xiong, Pan; Wu, Yunyan; Liu, Yifan
  • Energy & Environmental Science, Vol. 13, Issue 12
  • DOI: 10.1039/d0ee03206a

Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes
journal, June 2018


Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode
journal, August 2020


Insights into Li + , Na + , and K + Intercalation in Lepidocrocite-Type Layered TiO 2 Structures
journal, April 2018

  • Reeves, Kyle G.; Ma, Jiwei; Fukunishi, Mika
  • ACS Applied Energy Materials, Vol. 1, Issue 5
  • DOI: 10.1021/acsaem.8b00170

Layer‐Based Heterostructured Cathodes for Lithium‐Ion and Sodium‐Ion Batteries
journal, February 2019

  • Deng, Ya‐Ping; Wu, Zhen‐Guo; Liang, Ruilin
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201808522

Nonpassivated Silicon Anode Surface
journal, May 2020

  • Yin, Yanli; Arca, Elisabetta; Wang, Luning
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 23
  • DOI: 10.1021/acsami.0c03799

Lithium-based transition-metal oxides for battery electrodes analyzed by x-ray photoelectron spectroscopy. X. Li4Ti5O12
journal, May 2019

  • Haasch, Richard T.; Abraham, Daniel P.
  • Surface Science Spectra, Vol. 26, Issue 1
  • DOI: 10.1116/1.5080245

Protonic titanate derived from Cs x Ti 2−x/2 Mg x/2 O 4 (x = 0.7) with lepidocrocite-type layered structure
journal, January 2009

  • Gao, Tao; Fjellvåg, Helmer; Norby, Poul
  • J. Mater. Chem., Vol. 19, Issue 6
  • DOI: 10.1039/b813147c

Ti K -edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment
journal, July 1997


Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries
journal, October 2018

  • Liu, Xingwei; Jiang, Xiaoyu; Zeng, Ziqi
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 44
  • DOI: 10.1021/acsami.8b16129

Elucidating the Structure of Poly(dopamine)
journal, April 2012

  • Dreyer, Daniel R.; Miller, Daniel J.; Freeman, Benny D.
  • Langmuir, Vol. 28, Issue 15
  • DOI: 10.1021/la204831b

Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate Sodium Ion Energy Storage
journal, November 2018


Spontaneous autoxidation of dopamine
journal, January 1995

  • Herlinger, Erwin; Jameson, Reginald F.; Linert, Wolfgang
  • Journal of the Chemical Society, Perkin Transactions 2, Issue 2
  • DOI: 10.1039/p29950000259

Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications
journal, January 2019

  • Zhu, Yuanzhi; Peng, Wenchao; Li, Yang
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta06395a

Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
journal, December 2015

  • Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501489

A layered nonstoichiometric lepidocrocite-type sodium titanate anode material for sodium-ion batteries
journal, July 2021


Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries
journal, July 2020


Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries
journal, March 2020

  • Clites, Mallory; Andris, Ryan; Cullen, David A.
  • ACS Applied Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1021/acsaem.0c00274

Titanate Anodes for Sodium Ion Batteries
journal, September 2013

  • Doeff, Marca M.; Cabana, Jordi; Shirpour, Mona
  • Journal of Inorganic and Organometallic Polymers and Materials, Vol. 24, Issue 1
  • DOI: 10.1007/s10904-013-9977-8

X-ray spectroscopies studies of the 3 d transition metal oxides and applications of photocatalysis
journal, February 2017

  • Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao
  • MRS Communications, Vol. 7, Issue 1
  • DOI: 10.1557/mrc.2017.6

New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems
journal, January 2013

  • Shirpour, Mona; Cabana, Jordi; Doeff, Marca
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41037d

Disordered Distribution of K + Ions Interlayered in K x Ti 2−x/3 Li x/3 O 4 (x = 0.8)
journal, April 2000

  • Izumi, Fujio; Ikeda, Takuji; Sasaki, Takayoshi
  • Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, Vol. 341, Issue 2
  • DOI: 10.1080/10587250008026149

Synthesis and Electrochemical Performance of C-Base-Centered Lepidocrocite-like Titanates for Na-Ion Batteries
journal, August 2018

  • Katogi, Akihiro; Kubota, Kei; Chihara, Kuniko
  • ACS Applied Energy Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsaem.8b00345

Size‐Independent Fast Ion Intercalation in Two‐Dimensional Titania Nanosheets for Alkali‐Metal‐Ion Batteries
journal, June 2019

  • Yang, Jinlin; Xiao, Xu; Gong, Wenbin
  • Angewandte Chemie International Edition, Vol. 58, Issue 26
  • DOI: 10.1002/anie.201902478

Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13
journal, December 2004


Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries
journal, June 2016


Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries
journal, March 2020

  • Liu, Mengchuang; Zhang, Junyao; Guo, Shuhan
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 15
  • DOI: 10.1021/acsami.0c02230

Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals
journal, September 2003

  • Tanaka, Tomohiro; Ebina, Yasuo; Takada, Kazunori
  • Chemistry of Materials, Vol. 15, Issue 18
  • DOI: 10.1021/cm034307j

Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries
journal, September 2017


Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials
journal, April 2014

  • Shirpour, Mona; Cabana, Jordi; Doeff, Marca
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm500342m