DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel Co‐Catalytic Activities of Solid and Liquid Phase Catalysts in High‐Rate Li‐Air Batteries

Abstract

Abstract Li‐air batteries are considered strong candidates for the next‐generation energy storage systems designed for electrical transportation. However, low cyclability and current rates are two major drawbacks that hinder them from further realization. These issues necessitate the discovery of novel materials to significantly enhance the redox process of discharge products. In this study, a novel catalytic system comprised of tin sulfide (SnS) nanoflakes as a solid catalyst and tin iodide (SnI 2 ) as a dual‐functional electrolyte additive is discovered. This system enables operating the battery at high current rates up to 10 000 mA g −1 (corresponding to 1 mA cm −2 ). The SnS catalyst shows outstanding catalytic activity for both oxygen reduction and evolution reactions compared to carbon, noble metals, and other transition metal dichalcogenides. It also exhibits good structural integrity at high rates. The computations indicate numerous possible oxygen reduction sites without oxygen dissociations on the SnS surface through solution mechanism that is likely responsible for the formation of Li 2 O 2 . The calculations also indicate that the role of the SnI 2 is not only reacting with the lithium anode to provide protection but reducing the charge potential by promoting catalytic decomposition of the Li 2more » O 2 . This work provides new novel additives for designing high‐rate Li‐air batteries.« less

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [2];  [2];  [4];  [2];  [5];  [2];  [3];  [5]; ORCiD logo [2]
  1. Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago IL 60607 USA, Materials Science Division Argonne National Laboratory Argonne IL 60439 USA
  2. Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago IL 60607 USA
  3. Materials Science Division Argonne National Laboratory Argonne IL 60439 USA, Department of Chemical Engineering University of Illinois at Chicago Chicago IL 60607 USA
  4. Department of Physics University of Illinois at Chicago Chicago IL 60607 USA
  5. Materials Science Division Argonne National Laboratory Argonne IL 60439 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1892365
Alternate Identifier(s):
OSTI ID: 1901488
Resource Type:
Published Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 12 Journal Issue: 45; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Zhang, Chengji, Jaradat, Ahmad, Singh, Sachin Kumar, Rojas, Tomas, Ahmadiparidari, Alireza, Rastegar, Sina, Wang, Shuxi, Majidi, Leily, Redfern, Paul, Subramanian, Arunkumar, Ngo, Anh T., Curtiss, Larry A., and Salehi‐khojin, Amin. Novel Co‐Catalytic Activities of Solid and Liquid Phase Catalysts in High‐Rate Li‐Air Batteries. Germany: N. p., 2022. Web. doi:10.1002/aenm.202201616.
Zhang, Chengji, Jaradat, Ahmad, Singh, Sachin Kumar, Rojas, Tomas, Ahmadiparidari, Alireza, Rastegar, Sina, Wang, Shuxi, Majidi, Leily, Redfern, Paul, Subramanian, Arunkumar, Ngo, Anh T., Curtiss, Larry A., & Salehi‐khojin, Amin. Novel Co‐Catalytic Activities of Solid and Liquid Phase Catalysts in High‐Rate Li‐Air Batteries. Germany. https://doi.org/10.1002/aenm.202201616
Zhang, Chengji, Jaradat, Ahmad, Singh, Sachin Kumar, Rojas, Tomas, Ahmadiparidari, Alireza, Rastegar, Sina, Wang, Shuxi, Majidi, Leily, Redfern, Paul, Subramanian, Arunkumar, Ngo, Anh T., Curtiss, Larry A., and Salehi‐khojin, Amin. Thu . "Novel Co‐Catalytic Activities of Solid and Liquid Phase Catalysts in High‐Rate Li‐Air Batteries". Germany. https://doi.org/10.1002/aenm.202201616.
@article{osti_1892365,
title = {Novel Co‐Catalytic Activities of Solid and Liquid Phase Catalysts in High‐Rate Li‐Air Batteries},
author = {Zhang, Chengji and Jaradat, Ahmad and Singh, Sachin Kumar and Rojas, Tomas and Ahmadiparidari, Alireza and Rastegar, Sina and Wang, Shuxi and Majidi, Leily and Redfern, Paul and Subramanian, Arunkumar and Ngo, Anh T. and Curtiss, Larry A. and Salehi‐khojin, Amin},
abstractNote = {Abstract Li‐air batteries are considered strong candidates for the next‐generation energy storage systems designed for electrical transportation. However, low cyclability and current rates are two major drawbacks that hinder them from further realization. These issues necessitate the discovery of novel materials to significantly enhance the redox process of discharge products. In this study, a novel catalytic system comprised of tin sulfide (SnS) nanoflakes as a solid catalyst and tin iodide (SnI 2 ) as a dual‐functional electrolyte additive is discovered. This system enables operating the battery at high current rates up to 10 000 mA g −1 (corresponding to 1 mA cm −2 ). The SnS catalyst shows outstanding catalytic activity for both oxygen reduction and evolution reactions compared to carbon, noble metals, and other transition metal dichalcogenides. It also exhibits good structural integrity at high rates. The computations indicate numerous possible oxygen reduction sites without oxygen dissociations on the SnS surface through solution mechanism that is likely responsible for the formation of Li 2 O 2 . The calculations also indicate that the role of the SnI 2 is not only reacting with the lithium anode to provide protection but reducing the charge potential by promoting catalytic decomposition of the Li 2 O 2 . This work provides new novel additives for designing high‐rate Li‐air batteries.},
doi = {10.1002/aenm.202201616},
journal = {Advanced Energy Materials},
number = 45,
volume = 12,
place = {Germany},
year = {Thu Oct 13 00:00:00 EDT 2022},
month = {Thu Oct 13 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.202201616

Save / Share:

Works referenced in this record:

High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX 3 (X = I and Br) Redox Mediators
journal, January 2021

  • Rastegar, Sina; Hemmat, Zahra; Zhang, Chengji
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 4
  • DOI: 10.1021/acsami.0c15200

Excellent Li-ion storage performances of hierarchical SnO-SnO 2 composite powders and SnO nanoplates prepared by one-pot spray pyrolysis
journal, August 2017


A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Mechanism and performance of lithium–oxygen batteries – a perspective
journal, January 2017

  • Mahne, Nika; Fontaine, Olivier; Thotiyl, Musthafa Ottakam
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/C7SC02519J

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Pt and Pd catalyzed oxidation of Li 2 O 2 and DMSO during Li–O 2 battery charging
journal, January 2016

  • Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark
  • Chemical Communications, Vol. 52, Issue 39
  • DOI: 10.1039/C6CC01778A

High Performance Air Breathing Flexible Lithium–Air Battery
journal, September 2021


A stable cathode for the aprotic Li–O2 battery
journal, September 2013

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3737

An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries
journal, December 2015

  • Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.
  • The Journal of Chemical Physics, Vol. 143, Issue 22
  • DOI: 10.1063/1.4936410

Current Progress on Rechargeable Magnesium-Air Battery
journal, August 2017

  • Li, Chun-Sheng; Sun, Yan; Gebert, Florian
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700869

Review on Li–air batteries—Opportunities, limitations and perspective
journal, February 2011


Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators
journal, January 2020

  • Liang, Zhuojian; Zou, Qingli; Xie, Jing
  • Energy & Environmental Science, Vol. 13, Issue 9
  • DOI: 10.1039/D0EE01114B

Raman Evidence for Late Stage Disproportionation in a Li–O2 Battery
journal, July 2014

  • Zhai, Dengyun; Wang, Hsien-Hau; Lau, Kah Chun
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15, p. 2705-2710
  • DOI: 10.1021/jz501323n

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
journal, June 2007


Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries
journal, September 2014

  • Lu, Jun; Cheng, Lei; Lau, Kah Chun
  • Nature Communications, Vol. 5, Article No. 4895
  • DOI: 10.1038/ncomms5895

SnO by XPS
journal, January 1993

  • Stranick, Michael A.; Moskwa, Anthony
  • Surface Science Spectra, Vol. 2, Issue 1
  • DOI: 10.1116/1.1247723

Text mining assisted review of the literature on Li-O 2 batteries
journal, September 2019

  • Torayev, Amangeldi; Magusin, Pieter C. M. M.; Grey, Clare P.
  • Journal of Physics: Materials, Vol. 2, Issue 4
  • DOI: 10.1088/2515-7639/ab3611

The Lithium Air Battery
book, January 2014


Understanding the behavior of Li–oxygen cells containing LiI
journal, January 2015

  • Kwak, Won-Jin; Hirshberg, Daniel; Sharon, Daniel
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA01399B

A lithium–oxygen battery with a long cycle life in an air-like atmosphere
journal, March 2018

  • Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram
  • Nature, Vol. 555, Issue 7697
  • DOI: 10.1038/nature25984

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Electrolyte Composition in Li/O 2 Batteries with LiI Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling
journal, January 2018

  • Nakanishi, Azusa; Thomas, Morgan L.; Kwon, Hoi-Min
  • The Journal of Physical Chemistry C, Vol. 122, Issue 3
  • DOI: 10.1021/acs.jpcc.7b11859

2D SnSe Cathode Catalyst Featuring an Efficient Facet‐Dependent Selective Li 2 O 2 Growth/Decomposition for Li–Oxygen Batteries
journal, April 2022

  • Zhang, Guoliang; Li, Gaoyang; Wang, Jun
  • Advanced Energy Materials, Vol. 12, Issue 21
  • DOI: 10.1002/aenm.202103910

The importance of anode protection towards lithium oxygen batteries
journal, January 2020

  • Bi, Xuanxuan; Amine, Khalil; Lu, Jun
  • Journal of Materials Chemistry A, Vol. 8, Issue 7
  • DOI: 10.1039/C9TA12414D

Evolution of Li 2 O 2 Growth and Its Effect on Kinetics of Li–O 2 Batteries
journal, July 2014

  • Xia, Chun; Waletzko, Michael; Chen, Limei
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 15
  • DOI: 10.1021/am5010943

Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery
journal, January 2015

  • Seo, Daniel M.; Nguyen, Cao Cuong; Young, Benjamin T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0121513jes

Solvothermal synthesis of tin sulfide (SnS) nanorods and investigation of its field emission properties
journal, January 2018


XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction
journal, August 2018


Applications of MoS2 in Li–O2 Batteries: Development and Challenges
journal, March 2021


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery
journal, January 2013

  • Yang, Junbing; Zhai, Dengyun; Wang, Hsien-Hau
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11, p. 3764-3771
  • DOI: 10.1039/c3cp00069a

Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth
journal, March 2013

  • Mitchell, Robert R.; Gallant, Betar M.; Shao-Horn, Yang
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 7, p. 1060-1064
  • DOI: 10.1021/jz4003586

Dimethyl sulfoxide by near-ambient pressure XPS
journal, June 2019

  • Avval, Tahereh G.; Cushman, Cody V.; Bahr, Stephan
  • Surface Science Spectra, Vol. 26, Issue 1
  • DOI: 10.1116/1.5053099

The influence of transition metal oxides on the kinetics of Li 2 O 2 oxidation in Li–O 2 batteries: high activity of chromium oxides
journal, January 2014

  • Yao, Koffi P. C.; Lu, Yi-Chun; Amanchukwu, Chibueze V.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 6
  • DOI: 10.1039/C3CP53330A

Charging a Li–O2 battery using a redox mediator
journal, May 2013

  • Chen, Yuhui; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1646

Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode
journal, October 2013

  • Zhai, Dengyun; Wang, Hsien-Hau; Yang, Junbing
  • Journal of the American Chemical Society, Vol. 135, Issue 41, p. 15364-15372
  • DOI: 10.1021/ja403199d

Improved Synthesis of Graphene Oxide
journal, July 2010

  • Marcano, Daniela C.; Kosynkin, Dmitry V.; Berlin, Jacob M.
  • ACS Nano, Vol. 4, Issue 8, p. 4806-4814
  • DOI: 10.1021/nn1006368

Ni 3 Sn 4 Electrodes for Li-Ion Batteries: Li−Sn Alloying Process and Electrode/Electrolyte Interface Phenomena
journal, August 2008

  • Ehinon, K. K. D.; Naille, S.; Dedryvère, R.
  • Chemistry of Materials, Vol. 20, Issue 16
  • DOI: 10.1021/cm8006099

Redox Mediators for Li-O 2 Batteries: Status and Perspectives
journal, November 2017


Hydrothermal Synthesis, Characterization and Raman Vibrations of Chalcogenide SnS Nanorods
journal, December 2017


Corrosion studies of LiH thin films
journal, February 2017


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Rational design of redox mediators for advanced Li–O2 batteries
journal, May 2016


The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries
journal, September 2017

  • Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201606572

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Hybrid Li-Ion and Li-O2 Battery Enabled by Oxyhalogen-Sulfur Electrochemistry
journal, November 2018


A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries
journal, January 2014

  • Younesi, R.; Norby, P.; Vegge, T.
  • ECS Electrochemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1149/2.001403eel

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries
journal, July 2012


Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the Graphite Anode
journal, January 2016

  • An, Seong Jin; Li, Jianlin; Sheng, Yangping
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0171614jes

Solvent-Dependent Oxidizing Power of LiI Redox Couples for Li-O2 Batteries
journal, April 2019


Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium–oxygen batteries
journal, August 2019


Gaussian-4 theory using reduced order perturbation theory
journal, September 2007

  • Curtiss, Larry A.; Redfern, Paul C.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 127, Issue 12
  • DOI: 10.1063/1.2770701

MnCo2O4Nanowires Anchored on Reduced Graphene Oxide Sheets as Effective Bifunctional Catalysts for Li-O2Battery Cathodes
journal, April 2015


A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide
journal, August 2018


All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries
journal, January 2011

  • Mitchell, Robert R.; Gallant, Betar M.; Thompson, Carl V.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01496j

Binding Energy Referencing for XPS in Alkali Metal-Based Battery Materials Research (II): Application to Complex Composite Electrodes
journal, August 2018


High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method
journal, November 2016

  • Yu, Huitao; Zhang, Bangwen; Bulin, Chaoke
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep36143

Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium–Oxygen Batteries
journal, June 2016

  • Liang, Zhuojian; Lu, Yi-Chun
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b01821

Unraveling the Complex Role of Iodide Additives in Li–O 2 Batteries
journal, July 2017


3-D binder-free graphene foam as a cathode for high capacity Li–O2 batteries
journal, January 2016

  • Liu, Chenjuan; Younesi, Reza; Tai, Cheuk-Wai
  • Journal of Materials Chemistry A, Vol. 4, Issue 25
  • DOI: 10.1039/C5TA10690G

Solid Electrolyte Interphase Film on Lithium Metal Anode in Mixed-Salt System
journal, January 2019

  • Eijima, Sho; Sonoki, Hidetoshi; Matsumoto, Mitsuhiro
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0611903jes

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Secondary electron emission of tin and tin-lithium under low energy helium plasma exposure
journal, December 2017


Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage
journal, October 2009

  • Lv, Wei; Tang, Dai-Ming; He, Yan-Bing
  • ACS Nano, Vol. 3, Issue 11
  • DOI: 10.1021/nn900933u

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries
journal, January 2016


XPS examination of tin oxide on float glass surface
journal, March 1990


Atmospheric pressure chemical vapour deposition of tin(ii) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide
journal, January 2000

  • Price, Louise S.; Parkin, Ivan P.; Field, Mark N.
  • Journal of Materials Chemistry, Vol. 10, Issue 2
  • DOI: 10.1039/a907939d

High yield electrochemical exfoliation synthesis of tin selenide quantum dots for high-performance lithium-ion batteries
journal, January 2019

  • Li, Jing; Liu, Wei; Chen, Cheng
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/C9TA04643G

Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li–O2batteries
journal, January 2015

  • Zhou, Wei; Cheng, Yi; Yang, Xiaofei
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03482E

TEMPO-Ionic Liquids as Redox Mediators and Solvents for Li–O 2 Batteries
journal, February 2020

  • Tkacheva, Anastasiia; Zhang, Jinqiang; Sun, Bing
  • The Journal of Physical Chemistry C, Vol. 124, Issue 9
  • DOI: 10.1021/acs.jpcc.0c00367

Raman Spectroscopy in Lithium-Oxygen Battery Systems
journal, August 2015

  • Gittleson, Forrest S.; Yao, Koffi P. C.; Kwabi, David G.
  • ChemElectroChem, Vol. 2, Issue 10
  • DOI: 10.1002/celc.201500218

The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O 2 Batteries
journal, January 2018

  • Liu, Tao; Frith, James T.; Kim, Gunwoo
  • Journal of the American Chemical Society, Vol. 140, Issue 4
  • DOI: 10.1021/jacs.7b11007

Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances
journal, January 2017

  • Wang, Jinghui; Li, Hui; Meng, Sugang
  • RSC Advances, Vol. 7, Issue 43
  • DOI: 10.1039/C7RA04041E

A Comparative Study of Redox Mediators for Improved Performance of Li–Oxygen Batteries
journal, June 2020

  • Zhang, Chengji; Dandu, Naveen; Rastegar, Sina
  • Advanced Energy Materials, Vol. 10, Issue 27
  • DOI: 10.1002/aenm.202000201

Critical Challenges in Rechargeable Aprotic Li-O 2 Batteries
journal, February 2016

  • Feng, Ningning; He, Ping; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502303