DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation

Abstract

To detect a specific radio-frequency (rf) magnetic field, rf optically pumped magnetometers (OPMs) require a static magnetic field to set the Larmor frequency of the atoms equal to the frequency of interest. However, unshielded and variable magnetic field environments (e.g., an rf OPM on a moving platform) pose a problem for rf OPM operation. Here, we demonstrate the use of a natural-abundance rubidium vapor to make a comagnetometer to address this challenge. Our implementation builds upon the simultaneous application of several OPM techniques within the same vapor cell. First, we use a modified implementation of an OPM variometer based on 87Rb to detect and actively cancel unwanted external fields at frequencies ≲60 Hz using active feedback to a set of field control coils. In this experiment, we exploit this stabilized field environment to implement a high-sensitivity rf magnetometer using 85Rb. Using this approach, we demonstrate the ability to measure rf fields with a sensitivity of approximately 9 fT Hz-1/2 inside a magnetic shield in the presence of an applied field of approximately 20 μT along three mutually orthogonal directions. This demonstration opens up a path toward completely unshielded operation of a high-sensitivity rf OPM.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Center for Quantum Information and Control
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1888509
Alternate Identifier(s):
OSTI ID: 1894416
Report Number(s):
SAND2022-12601J
Journal ID: ISSN 2331-7019; 709926; TRN: US2310048
Grant/Contract Number:  
NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 18; Journal Issue: 4; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Metrology; Optical pumping; Quantum sensing; Radio frequency techniques; Atomic ensemble; Atomic techniques; Electron spin resonance

Citation Formats

Dhombridge, Jonathan E., Claussen, Neil R., Iivanainen, Joonas, and Schwindt, Peter D.D. High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation. United States: N. p., 2022. Web. doi:10.1103/physrevapplied.18.044052.
Dhombridge, Jonathan E., Claussen, Neil R., Iivanainen, Joonas, & Schwindt, Peter D.D. High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation. United States. https://doi.org/10.1103/physrevapplied.18.044052
Dhombridge, Jonathan E., Claussen, Neil R., Iivanainen, Joonas, and Schwindt, Peter D.D. Fri . "High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation". United States. https://doi.org/10.1103/physrevapplied.18.044052. https://www.osti.gov/servlets/purl/1888509.
@article{osti_1888509,
title = {High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation},
author = {Dhombridge, Jonathan E. and Claussen, Neil R. and Iivanainen, Joonas and Schwindt, Peter D.D.},
abstractNote = {To detect a specific radio-frequency (rf) magnetic field, rf optically pumped magnetometers (OPMs) require a static magnetic field to set the Larmor frequency of the atoms equal to the frequency of interest. However, unshielded and variable magnetic field environments (e.g., an rf OPM on a moving platform) pose a problem for rf OPM operation. Here, we demonstrate the use of a natural-abundance rubidium vapor to make a comagnetometer to address this challenge. Our implementation builds upon the simultaneous application of several OPM techniques within the same vapor cell. First, we use a modified implementation of an OPM variometer based on 87Rb to detect and actively cancel unwanted external fields at frequencies ≲60 Hz using active feedback to a set of field control coils. In this experiment, we exploit this stabilized field environment to implement a high-sensitivity rf magnetometer using 85Rb. Using this approach, we demonstrate the ability to measure rf fields with a sensitivity of approximately 9 fT Hz-1/2 inside a magnetic shield in the presence of an applied field of approximately 20 μT along three mutually orthogonal directions. This demonstration opens up a path toward completely unshielded operation of a high-sensitivity rf OPM.},
doi = {10.1103/physrevapplied.18.044052},
journal = {Physical Review Applied},
number = 4,
volume = 18,
place = {United States},
year = {Fri Oct 21 00:00:00 EDT 2022},
month = {Fri Oct 21 00:00:00 EDT 2022}
}

Works referenced in this record:

Eddy current imaging with an atomic radio-frequency magnetometer
journal, May 2016

  • Wickenbrock, Arne; Leefer, Nathan; Blanchard, John W.
  • Applied Physics Letters, Vol. 108, Issue 18
  • DOI: 10.1063/1.4948534

Magnetic-resonance imaging of the human brain with an atomic magnetometer
journal, July 2013

  • Savukov, I.; Karaulanov, T.
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4816433

All-optical magnetometry for NMR detection in a micro-Tesla field and unshielded environment
journal, December 2009

  • Bevilacqua, G.; Biancalana, V.; Dancheva, Y.
  • Journal of Magnetic Resonance, Vol. 201, Issue 2
  • DOI: 10.1016/j.jmr.2009.09.013

Active underwater detection with an array of atomic magnetometers
journal, March 2018

  • Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio
  • Applied Optics, Vol. 57, Issue 10
  • DOI: 10.1364/AO.57.002346

An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity
journal, December 2014

  • Keder, David A.; Prescott, David W.; Conovaloff, Adam W.
  • AIP Advances, Vol. 4, Issue 12
  • DOI: 10.1063/1.4905449

Theory of spin-exchange optical pumping of 3 He and 129 Xe
journal, August 1998


Electromagnetic induction imaging with a scanning radio frequency atomic magnetometer
journal, July 2021

  • Deans, Cameron; Cohen, Yuval; Yao, Han
  • Applied Physics Letters, Vol. 119, Issue 1
  • DOI: 10.1063/5.0056876

MRI with an atomic magnetometer suitable for practical imaging applications
journal, August 2009

  • Savukov, I. M.; Zotev, V. S.; Volegov, P. L.
  • Journal of Magnetic Resonance, Vol. 199, Issue 2
  • DOI: 10.1016/j.jmr.2009.04.012

New Limit on Lorentz-Invariance- and C P T -Violating Neutron Spin Interactions Using a Free-Spin-Precession He 3 - Xe 129 Comagnetometer
journal, March 2014


Dual-frequency cesium spin maser
journal, September 2020


Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
journal, November 2017


Three-component variometer based on a scalar potassium sensor
journal, April 2004

  • Alexandrov, E. B.; Balabas, M. V.; Kulyasov, V. N.
  • Measurement Science and Technology, Vol. 15, Issue 5
  • DOI: 10.1088/0957-0233/15/5/020

Tunable Atomic Magnetometer for Detection of Radio-Frequency Magnetic Fields
journal, August 2005


Limits on New Long Range Nuclear Spin-Dependent Forces Set with a K He 3 Comagnetometer
journal, December 2009


Superconducting quantum interference devices: State of the art and applications
journal, October 2004


He3Xe129 Comagnetometery using Rb87 Detection and Decoupling
journal, January 2018


Magnetic induction measurements using an all-optical 87Rb atomic magnetometer
journal, December 2013

  • Wickenbrock, Arne; Tricot, François; Renzoni, Ferruccio
  • Applied Physics Letters, Vol. 103, Issue 24
  • DOI: 10.1063/1.4848196

Enhanced material defect imaging with a radio-frequency atomic magnetometer
journal, March 2019

  • Bevington, P.; Gartman, R.; Chalupczak, W.
  • Journal of Applied Physics, Vol. 125, Issue 9
  • DOI: 10.1063/1.5083039

Electromagnetic induction imaging with a radio-frequency atomic magnetometer
journal, March 2016

  • Deans, Cameron; Marmugi, Luca; Hussain, Sarah
  • Applied Physics Letters, Vol. 108, Issue 10
  • DOI: 10.1063/1.4943659

Constraints on Spin-Dependent Short-Range Interaction between Nucleons
journal, September 2013


Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance
journal, November 2006

  • Lee, S. -K.; Sauer, K. L.; Seltzer, S. J.
  • Applied Physics Letters, Vol. 89, Issue 21
  • DOI: 10.1063/1.2390643

Development of co-located 129 Xe and 131 Xe nuclear spin masers with external feedback scheme
journal, February 2018


Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments
journal, August 2018

  • Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5026769

Nuclear spin maser with an artificial feedback mechanism
journal, November 2002


Single-Species Atomic Comagnetometer Based on Rb 87 Atoms
journal, May 2020


Magnetic induction tomography using an all-optical ^87Rb atomic magnetometer
journal, November 2014

  • Wickenbrock, Arne; Jurgilas, Sarunas; Dow, Albert
  • Optics Letters, Vol. 39, Issue 22
  • DOI: 10.1364/OL.39.006367

Bose-Einstein Condensate Comagnetometer
journal, April 2020


Magnetic resonance imaging with an optical atomic magnetometer
journal, August 2006

  • Xu, S.; Yashchuk, V. V.; Donaldson, M. H.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 34, p. 12668-12671
  • DOI: 10.1073/pnas.0605396103

Prospects for magnetic field communications and location using quantum sensors
journal, December 2017

  • Gerginov, V.; da Silva, F. C. S.; Howe, D.
  • Review of Scientific Instruments, Vol. 88, Issue 12
  • DOI: 10.1063/1.5003821

Room temperature femtotesla radio-frequency atomic magnetometer
journal, June 2012

  • Chalupczak, W.; Godun, R. M.; Pustelny, S.
  • Applied Physics Letters, Vol. 100, Issue 24
  • DOI: 10.1063/1.4729016

Magnetic-field modeling with surface currents. Part I. Physical and computational principles of bfieldtools
journal, August 2020

  • Mäkinen, Antti J.; Zetter, Rasmus; Iivanainen, Joonas
  • Journal of Applied Physics, Vol. 128, Issue 6
  • DOI: 10.1063/5.0016090

Superconducting quantum interference device instruments and applications
journal, October 2006

  • Fagaly, R. L.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2354545

Portable Magnetometry for Detection of Biomagnetism in Ambient Environments
journal, July 2020


Atomic Magnetometer Multisensor Array for rf Interference Mitigation and Unshielded Detection of Nuclear Quadrupole Resonance
journal, December 2016


New Limit on Lorentz- and C P T -Violating Neutron Spin Interactions
journal, October 2010


Constraints on Lorentz violation from clock-comparison experiments
journal, November 1999


Magnetic field modeling with surface currents. Part II. Implementation and usage of bfieldtools
journal, August 2020

  • Zetter, Rasmus; J. Mäkinen, Antti; Iivanainen, Joonas
  • Journal of Applied Physics, Vol. 128, Issue 6
  • DOI: 10.1063/5.0016087

Microwave cavity searches for dark-matter axions
journal, June 2003


Detection of NMR signals with a radio-frequency atomic magnetometer
journal, April 2007

  • Savukov, I. M.; Seltzer, S. J.; Romalis, M. V.
  • Journal of Magnetic Resonance, Vol. 185, Issue 2, p. 214-220
  • DOI: 10.1016/j.jmr.2006.12.012

Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers
journal, June 2020


Atomic Electric Dipole Moment Measurement Using Spin Exchange Pumped Masers of 129 Xe and 3 He
journal, January 2001


Remote sensing by nuclear quadrupole resonance
journal, June 2001

  • Garroway, A. N.; Buess, M. L.; Miller, J. B.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, Issue 6
  • DOI: 10.1109/36.927420

Spin-exchange-pumped He 3 and Xe 129 Zeeman masers
journal, April 1994