DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites

Abstract

The optoelectronic performance of organic–inorganic halide perovskite (OIHP)-based devices has been improved in recent years. Particularly, solar cells fabricated using mixed-cations and mixed-halides have outperformed their single-cation and single-halide counterparts. Yet, a systematic evaluation of the microstructural behavior of mixed perovskites is missing despite their known composition-dependent photoinstability. Here, we explore microstructural inhomogeneity in (FAPbI3)x(MAPbBr3)1–x using advanced scanning probe microscopy techniques. In this work, contact potential difference (CPD) maps measured by Kelvin probe force microscopy show an increased fraction of grains exhibiting a low CPD with flat topography as MAPbBr3 concentration is increased. The higher portion of low CPD contributes to asymmetric CPD distribution curves. Chemical analysis reveals these grains being rich in MA, Pb, and I. The composition-dependent phase segregation upon illumination, reflected on the emergence of a low-energy peak emission in the original photoluminescence spectra, arises from the formation of such grains with flat topology. Bias-dependent piezo-response force microscopy measurements, in these grains, further confirm vigorous ion migration and cause a hysteretic piezo-response. Our results, therefore, provide insights into the microstructural evaluation of phase segregation and ion migration in OIHPs pointing toward process optimization as a mean to further enhance their optoelectronic performance.

Authors:
ORCiD logo [1];  [2];  [3];  [2]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3];  [7]
  1. Univ. of New South Wales, Sydney, NSW (Australia); Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of New South Wales, Sydney, NSW (Australia)
  3. Korea Univ., Seoul, (Korea, Republic of)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Univ. of Tennessee, Knoxville, TN (United States)
  7. Univ. of New South Wales, Sydney, NSW (Australia); Univ. of Surrey, Guildford (United Kingdom)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC); Australian Centre for Advanced Photovoltaics; National Research Foundation of Korea (NRF)
OSTI Identifier:
1883741
Grant/Contract Number:  
AC05-00OR22725; NRF-2020R1A2C3009115
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 15; Journal Issue: 12; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; large bandgap perovskites; contact potential difference; inhomogeneity; phase instability; flat grains; ion migration; defects

Citation Formats

Kim, Dohyung, Lim, Jihoo, Lee, Seungmin, Soufiani, Arman Mahboubi, Choi, Eunyoung, Ievlev, Anton V., Borodinov, Nikolay, Liu, Yongtao, Ovchinnikova, Olga S., Ahmadi, Mahshid, Lim, Sean, Sharma, Pankaj, Seidel, Jan, Noh, Jun Hong, and Yun, Jae Sung. Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites. United States: N. p., 2021. Web. doi:10.1021/acsnano.1c08726.
Kim, Dohyung, Lim, Jihoo, Lee, Seungmin, Soufiani, Arman Mahboubi, Choi, Eunyoung, Ievlev, Anton V., Borodinov, Nikolay, Liu, Yongtao, Ovchinnikova, Olga S., Ahmadi, Mahshid, Lim, Sean, Sharma, Pankaj, Seidel, Jan, Noh, Jun Hong, & Yun, Jae Sung. Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites. United States. https://doi.org/10.1021/acsnano.1c08726
Kim, Dohyung, Lim, Jihoo, Lee, Seungmin, Soufiani, Arman Mahboubi, Choi, Eunyoung, Ievlev, Anton V., Borodinov, Nikolay, Liu, Yongtao, Ovchinnikova, Olga S., Ahmadi, Mahshid, Lim, Sean, Sharma, Pankaj, Seidel, Jan, Noh, Jun Hong, and Yun, Jae Sung. Tue . "Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites". United States. https://doi.org/10.1021/acsnano.1c08726. https://www.osti.gov/servlets/purl/1883741.
@article{osti_1883741,
title = {Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites},
author = {Kim, Dohyung and Lim, Jihoo and Lee, Seungmin and Soufiani, Arman Mahboubi and Choi, Eunyoung and Ievlev, Anton V. and Borodinov, Nikolay and Liu, Yongtao and Ovchinnikova, Olga S. and Ahmadi, Mahshid and Lim, Sean and Sharma, Pankaj and Seidel, Jan and Noh, Jun Hong and Yun, Jae Sung},
abstractNote = {The optoelectronic performance of organic–inorganic halide perovskite (OIHP)-based devices has been improved in recent years. Particularly, solar cells fabricated using mixed-cations and mixed-halides have outperformed their single-cation and single-halide counterparts. Yet, a systematic evaluation of the microstructural behavior of mixed perovskites is missing despite their known composition-dependent photoinstability. Here, we explore microstructural inhomogeneity in (FAPbI3)x(MAPbBr3)1–x using advanced scanning probe microscopy techniques. In this work, contact potential difference (CPD) maps measured by Kelvin probe force microscopy show an increased fraction of grains exhibiting a low CPD with flat topography as MAPbBr3 concentration is increased. The higher portion of low CPD contributes to asymmetric CPD distribution curves. Chemical analysis reveals these grains being rich in MA, Pb, and I. The composition-dependent phase segregation upon illumination, reflected on the emergence of a low-energy peak emission in the original photoluminescence spectra, arises from the formation of such grains with flat topology. Bias-dependent piezo-response force microscopy measurements, in these grains, further confirm vigorous ion migration and cause a hysteretic piezo-response. Our results, therefore, provide insights into the microstructural evaluation of phase segregation and ion migration in OIHPs pointing toward process optimization as a mean to further enhance their optoelectronic performance.},
doi = {10.1021/acsnano.1c08726},
journal = {ACS Nano},
number = 12,
volume = 15,
place = {United States},
year = {Tue Nov 30 00:00:00 EST 2021},
month = {Tue Nov 30 00:00:00 EST 2021}
}

Works referenced in this record:

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Chemical stability and instability of inorganic halide perovskites
journal, January 2019

  • Zhou, Yuanyuan; Zhao, Yixin
  • Energy & Environmental Science, Vol. 12, Issue 5
  • DOI: 10.1039/C8EE03559H

Low-temperature processed meso-superstructured to thin-film perovskite solar cells
journal, January 2013

  • Ball, James M.; Lee, Michael M.; Hey, Andrew
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40810h

Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells
journal, May 2016

  • Yun, Jae S.; Seidel, Jan; Kim, Jincheol
  • Advanced Energy Materials, Vol. 6, Issue 13
  • DOI: 10.1002/aenm.201600330

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites
journal, February 2019

  • Correa-Baena, Juan-Pablo; Luo, Yanqi; Brenner, Thomas M.
  • Science, Vol. 363, Issue 6427
  • DOI: 10.1126/science.aah5065

Direct Observation of Photoinduced Ion Migration in Lead Halide Perovskites
journal, November 2020

  • Liu, Yongtao; Ievlev, Anton V.; Borodinov, Nikolay
  • Advanced Functional Materials, Vol. 31, Issue 8
  • DOI: 10.1002/adfm.202008777

The existence and impact of persistent ferroelectric domains in MAPbI 3
journal, January 2019

  • Garten, Lauren M.; Moore, David T.; Nanayakkara, Sanjini U.
  • Science Advances, Vol. 5, Issue 1
  • DOI: 10.1126/sciadv.aas9311

Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties
journal, January 2017

  • Rehman, Waqaas; McMeekin, David P.; Patel, Jay B.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE03014A

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
journal, December 2014

  • Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6784

Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites
journal, May 2019


Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites
journal, January 2017


Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability
journal, January 2016


Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
journal, March 2020


Stabilization of the Perovskite Phase of Formamidinium Lead Triiodide by Methylammonium, Cs, and/or Rb Doping
journal, February 2017

  • Syzgantseva, Olga A.; Saliba, Michael; Grätzel, Michael
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 6
  • DOI: 10.1021/acs.jpclett.6b03014

Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
journal, January 2020


Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
journal, July 2014

  • Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan
  • Nature Materials, Vol. 13, Issue 9, p. 897-903
  • DOI: 10.1038/nmat4014

Heterogeneity at multiple length scales in halide perovskite semiconductors
journal, July 2019

  • Tennyson, Elizabeth M.; Doherty, Tiarnan A. S.; Stranks, Samuel D.
  • Nature Reviews Materials, Vol. 4, Issue 9
  • DOI: 10.1038/s41578-019-0125-0

Light- and bias-induced structural variations in metal halide perovskites
journal, January 2019


Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation
journal, January 2018


Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films
journal, October 2019

  • Szostak, R.; Silva, J. C.; Turren-Cruz, S. -H.
  • Science Advances, Vol. 5, Issue 10
  • DOI: 10.1126/sciadv.aaw6619

Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells
journal, April 2014

  • Frost, Jarvist M.; Butler, Keith T.; Brivio, Federico
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500390f

Mechanical Tuning of LaAlO 3 /SrTiO 3 Interface Conductivity
journal, April 2015


Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
journal, January 2016

  • Anaraki, Elham Halvani; Kermanpur, Ahmad; Steier, Ludmilla
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02390H

Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment
journal, August 2018

  • Yang, Jianming; Hong, Qiuming; Yuan, Zhongcheng
  • Advanced Optical Materials, Vol. 6, Issue 20
  • DOI: 10.1002/adom.201800262

Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene
journal, February 2020


Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals
journal, March 2019


Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells
journal, December 2016

  • Gratia, Paul; Grancini, Giulia; Audinot, Jean-Nicolas
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10049

Conversion of Single Crystalline PbI 2 to CH 3 NH 3 PbI 3 : Structural Relations and Transformation Dynamics
journal, September 2016


Planar-integrated single-crystalline perovskite photodetectors
journal, November 2015

  • Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9724

Halide Heterogeneity Affects Local Charge Carrier Dynamics in Mixed-Ion Lead Perovskite Thin Films
journal, April 2019


Atomistic origins of CH 3 NH 3 PbI 3 degradation to PbI 2 in vacuum
journal, March 2015

  • Deretzis, I.; Alberti, A.; Pellegrino, G.
  • Applied Physics Letters, Vol. 106, Issue 13
  • DOI: 10.1063/1.4916821

Bandgap Engineering Enhances the Performance of Mixed‐Cation Perovskite Materials for Indoor Photovoltaic Applications
journal, August 2019

  • Wu, Ming‐Ju; Kuo, Chien‐Chen; Jhuang, Lu‐Syuan
  • Advanced Energy Materials, Vol. 9, Issue 37
  • DOI: 10.1002/aenm.201901863

Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite
journal, November 2018


Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
journal, November 2017

  • Kovalenko, Maksym V.; Protesescu, Loredana; Bodnarchuk, Maryna I.
  • Science, Vol. 358, Issue 6364
  • DOI: 10.1126/science.aam7093

Electromechanics of Ferroelectric-Like Behavior of LaAlO 3 Thin Films
journal, September 2015

  • Sharma, Pankaj; Ryu, Sangwoo; Viskadourakis, Zacharias
  • Advanced Functional Materials, Vol. 25, Issue 41
  • DOI: 10.1002/adfm.201502483

Mitigation of Vacuum and Illumination-Induced Degradation in Perovskite Solar Cells by Structure Engineering
journal, May 2020


Potassium‐Induced Phase Stability Enables Stable and Efficient Wide‐Bandgap Perovskite Solar Cells
journal, May 2020


Ferroelectric Poling of Methylammonium Lead Iodide Thin Films
journal, November 2019

  • Röhm, Holger; Leonhard, Tobias; Hoffmann, Michael J.
  • Advanced Functional Materials, Vol. 30, Issue 5
  • DOI: 10.1002/adfm.201908657

Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics
journal, May 2019

  • Jacobs, Daniel A.; Langenhorst, Malte; Sahli, Florent
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 11
  • DOI: 10.1021/acs.jpclett.8b03721

Impact of microstructure on local carrier lifetime in perovskite solar cells
journal, April 2015


Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites
journal, April 2020

  • Doherty, Tiarnan A. S.; Winchester, Andrew J.; Macpherson, Stuart
  • Nature, Vol. 580, Issue 7803
  • DOI: 10.1038/s41586-020-2184-1

Lattice strain causes non-radiative losses in halide perovskites
journal, January 2019

  • Jones, Timothy W.; Osherov, Anna; Alsari, Mejd
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/C8EE02751J

Promises and challenges of perovskite solar cells
journal, November 2017

  • Correa-Baena, Juan-Pablo; Saliba, Michael; Buonassisi, Tonio
  • Science, Vol. 358, Issue 6364
  • DOI: 10.1126/science.aam6323

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite
journal, January 2016

  • Hermes, Ilka M.; Bretschneider, Simon A.; Bergmann, Victor W.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 10
  • DOI: 10.1021/acs.jpcc.5b11469

Tetragonal CH 3 NH 3 PbI 3 is ferroelectric
journal, June 2017

  • Rakita, Yevgeny; Bar-Elli, Omri; Meirzadeh, Elena
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 28
  • DOI: 10.1073/pnas.1702429114

Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion
journal, September 2017


Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite
journal, August 2018


Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
journal, December 2020


Is CH 3 NH 3 PbI 3 Polar?
journal, June 2016

  • G., Sharada; Mahale, Pratibha; Kore, Bhushan P.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 13
  • DOI: 10.1021/acs.jpclett.6b00803

Unveiling the Relationship between the Perovskite Precursor Solution and the Resulting Device Performance
journal, March 2020

  • Kim, Jincheol; Park, Byung-wook; Baek, Jongho
  • Journal of the American Chemical Society, Vol. 142, Issue 13
  • DOI: 10.1021/jacs.0c00411

Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


CH 3 NH 3 PbI 3 perovskites: Ferroelasticity revealed
journal, April 2017


Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films
journal, February 2016

  • Draguta, Sergiu; Thakur, Siddharatha; Morozov, Yurii V.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 4
  • DOI: 10.1021/acs.jpclett.5b02888

Ferroelectricity of CH 3 NH 3 PbI 3 Perovskite
journal, March 2015