DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanisms of shape transfer and preheating in indirect-drive double shell collisions

Abstract

Implosions of Hohlraum-driven double shell targets as an alternative inertial confinement fusion concept are underway at the National Ignition Facility. The double shell system relies on a series of energy transfer processes starting from thermal x-ray absorption by the outer shell, followed by collisional transfer of kinetic energy to a heavy metal inner shell, and finally, conversion to the internal energy of the deuterium-tritium fuel. During each of these energy transfer stages, low-mode asymmetries can act to reduce the ideal transfer efficiency degrading double shell performance. Mechanisms, such as hard x-ray preheat from the Hohlraum, not only decrease the efficiency of kinetic energy transfer but may also be a source of low-mode asymmetry. In this article, we evaluate the shape transfer processes through the time of shell collision using two-dimensional integrated Hohlraum and capsule computations. We find that the dominant mode of the shape transfer is well described using a “radial impulse” model from the shape of the foam pressure reservoir. To evaluate the importance of preheat on inner shell shape, we also report on first measurements of Au L-shell preheat asymmetry in a double shell with a tungsten pusher. These measurements showed a 65% higher preheat velocity at themore » pole of the capsule relative to the equator. We also found that the experiments provided rigorous constraints by which to test the Hohlraum model settings that impact the amount and symmetry of Au L-shell preheat via the plasma conditions inside the outer cone Au bubble.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [3];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1] more »; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3];  [3]; ORCiD logo [3];  [3] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1883020
Alternate Identifier(s):
OSTI ID: 1870931; OSTI ID: 1872357
Report Number(s):
LLNL-JRNL-829726; LA-UR-21-32041
Journal ID: ISSN 1070-664X; 1045521; TRN: US2307960
Grant/Contract Number:  
AC52-07NA27344; 89233218CNA000001; 89233218CNA000063
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 29; Journal Issue: 6; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; plasma confinement; shock waves; high-energy x-rays; hard x-rays; lasers; nuclear fuel; thermal radiation

Citation Formats

Loomis, Eric Nicholas, Robey, III, Harry F., Haines, Brian Michael, Morrow, Tana, Montgomery, David S., Wilson, Douglas Carl, Xu, Hongwei, Millot, Marius, Celliers, Peter, Sacks, Ryan Foster, Sauppe, Joshua Paul, Quintana, Theresa E., Heinbockel, Chuck, Kroll, Jeremy, Randolph, Blaine Randall, Fierro, Franklin, Wilson, Christopher Talker, Daughton, William Scott, Merritt, Elizabeth Catherine, Finnegan, Sean Michael, Kot, Lynn, Keiter, Paul Arthur, Sagert, Irina, Stark, David James, Amendt, Peter, Ping, Yuan, Smalyuk, Vladimir A., Patel, Mehul V., and Salmonson, Jay D. Mechanisms of shape transfer and preheating in indirect-drive double shell collisions. United States: N. p., 2022. Web. doi:10.1063/5.0081346.
Loomis, Eric Nicholas, Robey, III, Harry F., Haines, Brian Michael, Morrow, Tana, Montgomery, David S., Wilson, Douglas Carl, Xu, Hongwei, Millot, Marius, Celliers, Peter, Sacks, Ryan Foster, Sauppe, Joshua Paul, Quintana, Theresa E., Heinbockel, Chuck, Kroll, Jeremy, Randolph, Blaine Randall, Fierro, Franklin, Wilson, Christopher Talker, Daughton, William Scott, Merritt, Elizabeth Catherine, Finnegan, Sean Michael, Kot, Lynn, Keiter, Paul Arthur, Sagert, Irina, Stark, David James, Amendt, Peter, Ping, Yuan, Smalyuk, Vladimir A., Patel, Mehul V., & Salmonson, Jay D. Mechanisms of shape transfer and preheating in indirect-drive double shell collisions. United States. https://doi.org/10.1063/5.0081346
Loomis, Eric Nicholas, Robey, III, Harry F., Haines, Brian Michael, Morrow, Tana, Montgomery, David S., Wilson, Douglas Carl, Xu, Hongwei, Millot, Marius, Celliers, Peter, Sacks, Ryan Foster, Sauppe, Joshua Paul, Quintana, Theresa E., Heinbockel, Chuck, Kroll, Jeremy, Randolph, Blaine Randall, Fierro, Franklin, Wilson, Christopher Talker, Daughton, William Scott, Merritt, Elizabeth Catherine, Finnegan, Sean Michael, Kot, Lynn, Keiter, Paul Arthur, Sagert, Irina, Stark, David James, Amendt, Peter, Ping, Yuan, Smalyuk, Vladimir A., Patel, Mehul V., and Salmonson, Jay D. Wed . "Mechanisms of shape transfer and preheating in indirect-drive double shell collisions". United States. https://doi.org/10.1063/5.0081346. https://www.osti.gov/servlets/purl/1883020.
@article{osti_1883020,
title = {Mechanisms of shape transfer and preheating in indirect-drive double shell collisions},
author = {Loomis, Eric Nicholas and Robey, III, Harry F. and Haines, Brian Michael and Morrow, Tana and Montgomery, David S. and Wilson, Douglas Carl and Xu, Hongwei and Millot, Marius and Celliers, Peter and Sacks, Ryan Foster and Sauppe, Joshua Paul and Quintana, Theresa E. and Heinbockel, Chuck and Kroll, Jeremy and Randolph, Blaine Randall and Fierro, Franklin and Wilson, Christopher Talker and Daughton, William Scott and Merritt, Elizabeth Catherine and Finnegan, Sean Michael and Kot, Lynn and Keiter, Paul Arthur and Sagert, Irina and Stark, David James and Amendt, Peter and Ping, Yuan and Smalyuk, Vladimir A. and Patel, Mehul V. and Salmonson, Jay D.},
abstractNote = {Implosions of Hohlraum-driven double shell targets as an alternative inertial confinement fusion concept are underway at the National Ignition Facility. The double shell system relies on a series of energy transfer processes starting from thermal x-ray absorption by the outer shell, followed by collisional transfer of kinetic energy to a heavy metal inner shell, and finally, conversion to the internal energy of the deuterium-tritium fuel. During each of these energy transfer stages, low-mode asymmetries can act to reduce the ideal transfer efficiency degrading double shell performance. Mechanisms, such as hard x-ray preheat from the Hohlraum, not only decrease the efficiency of kinetic energy transfer but may also be a source of low-mode asymmetry. In this article, we evaluate the shape transfer processes through the time of shell collision using two-dimensional integrated Hohlraum and capsule computations. We find that the dominant mode of the shape transfer is well described using a “radial impulse” model from the shape of the foam pressure reservoir. To evaluate the importance of preheat on inner shell shape, we also report on first measurements of Au L-shell preheat asymmetry in a double shell with a tungsten pusher. These measurements showed a 65% higher preheat velocity at the pole of the capsule relative to the equator. We also found that the experiments provided rigorous constraints by which to test the Hohlraum model settings that impact the amount and symmetry of Au L-shell preheat via the plasma conditions inside the outer cone Au bubble.},
doi = {10.1063/5.0081346},
journal = {Physics of Plasmas},
number = 6,
volume = 29,
place = {United States},
year = {Wed Jun 01 00:00:00 EDT 2022},
month = {Wed Jun 01 00:00:00 EDT 2022}
}

Works referenced in this record:

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility
journal, April 2016

  • Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4947223

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials
journal, November 1965

  • Barker, L. M.; Hollenbach, R. E.
  • Review of Scientific Instruments, Vol. 36, Issue 11
  • DOI: 10.1063/1.1719405

Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility
journal, April 2016

  • Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948276

Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications
journal, September 2017

  • Brodrick, J. P.; Kingham, R. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.5001079

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Theory of radiative shocks in the mixed, optically thick-thin case
journal, September 2010

  • McClarren, Ryan G.; Drake, R. Paul; Morel, J. E.
  • Physics of Plasmas, Vol. 17, Issue 9
  • DOI: 10.1063/1.3466852

On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

Development of a directly driven multi-shell platform: Laser drive energetics
journal, February 2020

  • Krasheninnikova, Natalia S.; Schmitt, M. J.; Molvig, Kim
  • Physics of Plasmas, Vol. 27, Issue 2
  • DOI: 10.1063/1.5100518

Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire
journal, September 1970

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 41, Issue 10
  • DOI: 10.1063/1.1658439

Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs
journal, April 2004

  • Milovich, J. L.; Amendt, P.; Marinak, M.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1646161

Stable and confined burn in a Revolver ignition capsule
journal, August 2018

  • Molvig, Kim; Schmitt, Mark J.; Betti, Riccardo
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5037224

Advances in NLTE modeling for integrated simulations
journal, January 2010


Precision Shock Tuning on the National Ignition Facility
journal, May 2012


Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

First study of Hohlraum x-ray preheat asymmetry inside an ICF capsule
journal, December 2020

  • Dewald, E. L.; Landen, O. L.; Salmonson, J.
  • Physics of Plasmas, Vol. 27, Issue 12
  • DOI: 10.1063/5.0027467

Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

Radiative effects in radiative shocks in shock tubes
journal, September 2011


Design considerations for indirectly driven double shell capsules
journal, September 2018

  • Montgomery, D. S.; Daughton, W. S.; Albright, B. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5042478

Progress in Developing Novel Double-Shell Metal Targets Via Magnetron Sputtering
journal, December 2017


Ignition on the National Ignition Facility: a path towards inertial fusion energy
journal, September 2009


The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Experimental study of energy transfer in double shell implosions
journal, May 2019

  • Merritt, E. C.; Sauppe, J. P.; Loomis, E. N.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5086674

A model for radiative heating of a high-Z pusher
journal, July 2020

  • Dodd, E. S.; Molvig, K.; Huang, C. -K.
  • Physics of Plasmas, Vol. 27, Issue 7
  • DOI: 10.1063/5.0003637

Cretin—a radiative transfer capability for laboratory plasmas
journal, October 2001


Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


Detrimental effects and mitigation of the joint feature in double shell implosion simulations
journal, May 2021

  • Stark, D. J.; Sauppe, J. P.; Haines, B. M.
  • Physics of Plasmas, Vol. 28, Issue 5
  • DOI: 10.1063/5.0046435

Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

Progress towards a more predictive model for hohlraum radiation drive and symmetry
journal, May 2017

  • Jones, O. S.; Suter, L. J.; Scott, H. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982693

Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility
journal, July 2018

  • Loomis, E. N.; Yi, S. A.; Kyrala, G. A.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5040995

Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility
journal, January 2018


Heat transport modeling of the dot spectroscopy platform on NIF
journal, February 2018

  • Farmer, W. A.; Jones, O. S.; Barrios, M. A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 4
  • DOI: 10.1088/1361-6587/aaaefd

Constraining computational modeling of indirect drive double shell capsule implosions using experiments
journal, March 2021

  • Haines, Brian M.; Sauppe, J. P.; Keiter, P. A.
  • Physics of Plasmas, Vol. 28, Issue 3
  • DOI: 10.1063/5.0040290

Investigation of the 2 p 3 2 3 d 5 2 line emission of Au 53 + Au 69 + for diagnosing high energy density plasmas
journal, June 2008


Direct-drive double-shell implosion: A platform for burning-plasma physics studies
journal, December 2019


Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
journal, May 2007

  • Amendt, Peter; Cerjan, C.; Hamza, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2716406

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Observation of collapsing radiative shocks in laboratory experiments
journal, August 2006

  • Reighard, A. B.; Drake, R. P.; Dannenberg, K. K.
  • Physics of Plasmas, Vol. 13, Issue 8
  • DOI: 10.1063/1.2222294

L-shell spectroscopy of Au as a temperature diagnostic tool
journal, October 2008

  • Träbert, E.; Hansen, S. B.; Beiersdorfer, P.
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2953443