DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Artificial intelligence inferred microstructural properties from voltage–capacity curves

Abstract

Abstract The quantification of microstructural properties to optimize battery design and performance, to maintain product quality, or to track the degradation of LIBs remains expensive and slow when performed through currently used characterization approaches. In this paper, a convolution neural network-based deep learning approach (CNN) is reported to infer electrode microstructural properties from the inexpensive, easy to measure cell voltage versus capacity data. The developed framework combines two CNN models to balance the bias and variance of the overall predictions. As an example application, the method was demonstrated against porous electrode theory-generated voltage versus capacity plots. For the graphite|LiMn $$$$_2$$$$ 2 O $$$$_4$$$$ 4 chemistry, each voltage curve was parameterized as a function of the cathode microstructure tortuosity and area density, delivering CNN predictions of Bruggeman’s exponent and shape factor with 0.97 $$R^2$$ R 2 score within 2 s each, enabling to distinguish between different types of particle morphologies, anisotropies, and particle alignments. The developed neural network model can readily accelerate the processing-properties-performance and degradation characteristics of the existing and emerging LIB chemistries.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); National Science Foundation (NSF)
OSTI Identifier:
1879796
Alternate Identifier(s):
OSTI ID: 1904267
Grant/Contract Number:  
SC0021142; DMS-1555072; DMS-2053746; DMS-2134209
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 12 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
25 ENERGY STORAGE; batteries; computational methods

Citation Formats

Sun, Yixuan, Ayalasomayajula, Surya Mitra, Deva, Abhas, Lin, Guang, and García, R. Edwin. Artificial intelligence inferred microstructural properties from voltage–capacity curves. United Kingdom: N. p., 2022. Web. doi:10.1038/s41598-022-16942-5.
Sun, Yixuan, Ayalasomayajula, Surya Mitra, Deva, Abhas, Lin, Guang, & García, R. Edwin. Artificial intelligence inferred microstructural properties from voltage–capacity curves. United Kingdom. https://doi.org/10.1038/s41598-022-16942-5
Sun, Yixuan, Ayalasomayajula, Surya Mitra, Deva, Abhas, Lin, Guang, and García, R. Edwin. Thu . "Artificial intelligence inferred microstructural properties from voltage–capacity curves". United Kingdom. https://doi.org/10.1038/s41598-022-16942-5.
@article{osti_1879796,
title = {Artificial intelligence inferred microstructural properties from voltage–capacity curves},
author = {Sun, Yixuan and Ayalasomayajula, Surya Mitra and Deva, Abhas and Lin, Guang and García, R. Edwin},
abstractNote = {Abstract The quantification of microstructural properties to optimize battery design and performance, to maintain product quality, or to track the degradation of LIBs remains expensive and slow when performed through currently used characterization approaches. In this paper, a convolution neural network-based deep learning approach (CNN) is reported to infer electrode microstructural properties from the inexpensive, easy to measure cell voltage versus capacity data. The developed framework combines two CNN models to balance the bias and variance of the overall predictions. As an example application, the method was demonstrated against porous electrode theory-generated voltage versus capacity plots. For the graphite|LiMn $$_2$$ 2 O $$_4$$ 4 chemistry, each voltage curve was parameterized as a function of the cathode microstructure tortuosity and area density, delivering CNN predictions of Bruggeman’s exponent and shape factor with 0.97 $$R^2$$ R 2 score within 2 s each, enabling to distinguish between different types of particle morphologies, anisotropies, and particle alignments. The developed neural network model can readily accelerate the processing-properties-performance and degradation characteristics of the existing and emerging LIB chemistries.},
doi = {10.1038/s41598-022-16942-5},
journal = {Scientific Reports},
number = 1,
volume = 12,
place = {United Kingdom},
year = {Thu Aug 04 00:00:00 EDT 2022},
month = {Thu Aug 04 00:00:00 EDT 2022}
}

Works referenced in this record:

U1 snRNP regulates cancer cell migration and invasion in vitro
journal, January 2020


State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel
journal, January 2021

  • Xiao, Fei; Li, Chaoran; Fan, Yaxiang
  • International Journal of Electrical Power & Energy Systems, Vol. 124
  • DOI: 10.1016/j.ijepes.2020.106369

State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms
journal, March 2021

  • Chandran, Venkatesan; Patil, Chandrashekhar K.; Karthick, Alagar
  • World Electric Vehicle Journal, Vol. 12, Issue 1
  • DOI: 10.3390/wevj12010038

Microstructural effects on the average properties in porous battery electrodes
journal, March 2016


Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Data-driven prediction of battery cycle life before capacity degradation
journal, March 2019


Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles
journal, May 2019

  • Xiong, Rui; Zhang, Yongzhi; Wang, Ju
  • IEEE Transactions on Vehicular Technology, Vol. 68, Issue 5
  • DOI: 10.1109/TVT.2018.2864688

LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control
journal, January 2016

  • Torchio, Marcello; Magni, Lalo; Gopaluni, R. Bhushan
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0291607jes

Particle Size Polydispersity in Li-Ion Batteries
journal, December 2013

  • Chung, Ding-Wen; Shearing, Paul R.; Brandon, Nigel P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.097403jes

Image-based defect detection in lithium-ion battery electrode using convolutional neural networks
journal, August 2019

  • Badmos, Olatomiwa; Kopp, Andreas; Bernthaler, Timo
  • Journal of Intelligent Manufacturing, Vol. 31, Issue 4
  • DOI: 10.1007/s10845-019-01484-x

Modeling of lithium-ion batteries
journal, June 2003


Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
journal, July 2018

  • Zhang, Yongzhi; Xiong, Rui; He, Hongwen
  • IEEE Transactions on Vehicular Technology, Vol. 67, Issue 7
  • DOI: 10.1109/TVT.2018.2805189

Lithium-ion battery data and where to find it
journal, September 2021


Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease
journal, December 2016


Machine learning for continuous innovation in battery technologies
journal, June 2020

  • Aykol, Muratahan; Herring, Patrick; Anapolsky, Abraham
  • Nature Reviews Materials, Vol. 5, Issue 10
  • DOI: 10.1038/s41578-020-0216-y

Multiphase Porous Electrode Theory
journal, January 2017

  • Smith, Raymond B.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0171711jes

Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries
journal, April 2019

  • Joshi, Rajendra P.; Eickholt, Jesse; Li, Liling
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 20
  • DOI: 10.1021/acsami.9b04933

Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
journal, October 2021


Re-epithelialization and immune cell behaviour in an ex vivo human skin model
journal, January 2020


3D Quantification of Microstructural Properties of LiNi 0.5 Mn 0.3 Co 0.2 O 2 High‐Energy Density Electrodes by X‐Ray Holographic Nano‐Tomography
journal, January 2021

  • Nguyen, Tuan‐Tu; Villanova, Julie; Su, Zeliang
  • Advanced Energy Materials, Vol. 11, Issue 8
  • DOI: 10.1002/aenm.202003529

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Machine learning in materials design and discovery: Examples from the present and suggestions for the future
journal, December 2018


X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
journal, March 2013

  • Ebner, Martin; Geldmacher, Felix; Marone, Federica
  • Advanced Energy Materials, Vol. 3, Issue 7
  • DOI: 10.1002/aenm.201200932

Machine learning assisted materials design and discovery for rechargeable batteries
journal, October 2020


Comparison of prognostic algorithms for estimating remaining useful life of batteries
journal, June 2009

  • Saha, Bhaskar; Goebel, Kai; Christophersen, Jon
  • Transactions of the Institute of Measurement and Control, Vol. 31, Issue 3-4
  • DOI: 10.1177/0142331208092030

An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
journal, January 2014

  • Jalem, Randy; Nakayama, Masanobu; Kasuga, Toshihiro
  • J. Mater. Chem. A, Vol. 2, Issue 3
  • DOI: 10.1039/C3TA13235H

Critical review of state of health estimation methods of Li-ion batteries for real applications
journal, April 2016


Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries
journal, June 2000


Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode
journal, January 2011

  • Kehrwald, Dirk; Shearing, Paul R.; Brandon, Nigel P.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.079112jes

Measurement of three-dimensional microstructure in a LiCoO2 positive electrode
journal, April 2011


A novel deep learning framework for state of health estimation of lithium-ion battery
journal, December 2020


Challenges and opportunities towards fast-charging battery materials
journal, June 2019


A Data-Driven Multiscale Framework to Estimate Effective Properties of Lithium-Ion Batteries from Microstructure Images
journal, July 2020

  • Korneev, Svyatoslav; Arunachalam, Harikesh; Onori, Simona
  • Transport in Porous Media, Vol. 134, Issue 1
  • DOI: 10.1007/s11242-020-01441-w

On Veracity of Macroscopic Lithium-Ion Battery Models
journal, January 2015

  • Arunachalam, Harikesh; Onori, Simona; Battiato, Ilenia
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0771509jes

Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance
journal, December 2012

  • Bae, Chang-Jun; Erdonmez, Can K.; Halloran, John W.
  • Advanced Materials, Vol. 25, Issue 9
  • DOI: 10.1002/adma.201204055

Determining the uncertainty in microstructural parameters extracted from tomographic data
journal, January 2018

  • Pietsch, P.; Ebner, M.; Marone, F.
  • Sustainable Energy & Fuels, Vol. 2, Issue 3
  • DOI: 10.1039/C7SE00498B

Porous-electrode theory with battery applications
journal, January 1975


Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery
journal, March 2010


Quantifying tortuosity in porous Li-ion battery materials
journal, March 2009


Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning
journal, January 2021


Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries
journal, February 2013

  • Harris, Stephen J.; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp311431z

Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials
journal, November 2018


X-ray tomography for battery research and development
journal, August 2018


Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

The Development and Future of Lithium Ion Batteries
journal, December 2016

  • Blomgren, George E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0251701jes

Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials
journal, January 2017

  • Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02697D

Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling
journal, August 2019


An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes
journal, January 2012

  • Vijayaraghavan, Bharath; Ely, David R.; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes113224

Validity of the Bruggeman relation for porous electrodes
journal, October 2013

  • Chung, Ding-Wen; Ebner, Martin; Ely, David R.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074009

Health State Prediction of Lithium Ion Battery Based On Deep Learning Method
journal, March 2020

  • Lu, Sheng; Wang, Fei; Piao, Changhao
  • IOP Conference Series: Materials Science and Engineering, Vol. 782, Issue 3
  • DOI: 10.1088/1757-899X/782/3/032083

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy
journal, January 2016

  • Landesfeind, Johannes; Hattendorff, Johannes; Ehrl, Andreas
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1141607jes

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
journal, August 2018


SOC Estimation of Li-ion Batteries With Learning Rate-Optimized Deep Fully Convolutional Network
journal, July 2021

  • Hannan, M. A.; How, D. N. T.; Lipu, M. S. Hossain
  • IEEE Transactions on Power Electronics, Vol. 36, Issue 7
  • DOI: 10.1109/TPEL.2020.3041876

X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide
journal, July 2017


Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles
journal, June 2016

  • Hu, Xiaosong; Li, Shengbo Eben; Yang, Yalian
  • IEEE Transactions on Transportation Electrification, Vol. 2, Issue 2
  • DOI: 10.1109/TTE.2015.2512237

Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
journal, October 2013


Remaining useful life estimation – A review on the statistical data driven approaches
journal, August 2011

  • Si, Xiao-Sheng; Wang, Wenbin; Hu, Chang-Hua
  • European Journal of Operational Research, Vol. 213, Issue 1
  • DOI: 10.1016/j.ejor.2010.11.018

Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning
journal, November 2020


Representation of compounds for machine-learning prediction of physical properties
journal, April 2017


Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
journal, October 2013

  • Ebner, Martin; Chung, Ding-Wen; García, R. Edwin
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201301278

Quantifying Tortuosity of Porous Li-Ion Battery Electrodes: Comparing Polarization-Interrupt and Blocking-Electrolyte Methods
journal, January 2018

  • Pouraghajan, Fezzeh; Knight, Hannah; Wray, Michael
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0611811jes

Quantifying Inhomogeneity of Lithium Ion Battery Electrodes and Its Influence on Electrochemical Performance
journal, January 2018

  • Müller, Simon; Eller, Jens; Ebner, Martin
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0311802jes

Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
journal, February 2013


Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode
journal, January 2012

  • Shearing, P. R.; Brandon, N. P.; Gelb, J.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.053207jes

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Data driven analytics of porous battery microstructures
journal, January 2021

  • Deva, Abhas; Krs, Vojtech; Robinson, Lucas D.
  • Energy & Environmental Science, Vol. 14, Issue 4
  • DOI: 10.1039/D1EE00454A

Tortuosity in electrochemical devices: a review of calculation approaches
journal, November 2016


Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
journal, October 2019


Re-examining rates of lithium-ion battery technology improvement and cost decline
journal, January 2021

  • Ziegler, Micah S.; Trancik, Jessika E.
  • Energy & Environmental Science, Vol. 14, Issue 4
  • DOI: 10.1039/D0EE02681F