DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells

Abstract

Abstract All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat‐sensitive hybrid organic–inorganic counterparts. In particular, CsPbI 2 Br shows the highest potential for developing thermally‐stable perovskite solar cells (PSCs) among all‐inorganic compositions. However, controlling the crystallinity and morphology of all‐inorganic compositions is a significant challenge. Here, a simple, thermal gradient‐ and antisolvent‐free method is reported to control the crystallization of CsPbI 2 Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin‐coating and annealing to understand and optimize the evolving film properties. This leads to high‐quality perovskite films with micrometer‐scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open‐circuit voltage ( V OC ) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [1];  [7];  [7];  [2]; ORCiD logo [1]
  1. Institute for Photovoltaics (ipv) University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany, Helmholtz Young Investigator Group FRONTRUNNER IEK5‐Photovoltaik Forschungszentrum Jülich 52425 Jülich Germany
  2. Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
  3. Institute for Photovoltaics (ipv) University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany
  4. Zentrum für Sonnenenergie‐ und Wasserstoff‐Forschung Baden‐Württemberg (ZSW) 70563 Stuttgart Germany
  5. Materials Sciences Division Lawrence Berkeley Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
  6. Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
  7. Institute for Materials Science Chemical Materials Synthesis University of Stuttgart 70569 Stuttgart Germany
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); German Research Foundation (DFG); Spanish Ministry of Science and Education; Federal Ministry for Economic Affairs and Energy; Israel Ministry of Energy; National Research Foundation of Korea (NRF)
OSTI Identifier:
1873041
Alternate Identifier(s):
OSTI ID: 1876850; OSTI ID: 1889777
Grant/Contract Number:  
DE‐AC02‐05CH11231; AC02-05CH11231; GRK-2642; SPP-2196; 431314977; KO6414; PCI2020-112185; IDI-20210171; FKZ03EE1070B; FKZ03EE1070A; 220-11-031; 2021R1A6A3A03039891
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 9 Journal Issue: 23; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Byranvand, Mahdi Malekshahi, Kodalle, Tim, Zuo, Weiwei, Magorian Friedlmeier, Theresa, Abdelsamie, Maged, Hong, Kootak, Zia, Waqas, Perween, Shama, Clemens, Oliver, Sutter‐Fella, Carolin M., and Saliba, Michael. One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells. Germany: N. p., 2022. Web. doi:10.1002/advs.202202441.
Byranvand, Mahdi Malekshahi, Kodalle, Tim, Zuo, Weiwei, Magorian Friedlmeier, Theresa, Abdelsamie, Maged, Hong, Kootak, Zia, Waqas, Perween, Shama, Clemens, Oliver, Sutter‐Fella, Carolin M., & Saliba, Michael. One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells. Germany. https://doi.org/10.1002/advs.202202441
Byranvand, Mahdi Malekshahi, Kodalle, Tim, Zuo, Weiwei, Magorian Friedlmeier, Theresa, Abdelsamie, Maged, Hong, Kootak, Zia, Waqas, Perween, Shama, Clemens, Oliver, Sutter‐Fella, Carolin M., and Saliba, Michael. Sun . "One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells". Germany. https://doi.org/10.1002/advs.202202441.
@article{osti_1873041,
title = {One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells},
author = {Byranvand, Mahdi Malekshahi and Kodalle, Tim and Zuo, Weiwei and Magorian Friedlmeier, Theresa and Abdelsamie, Maged and Hong, Kootak and Zia, Waqas and Perween, Shama and Clemens, Oliver and Sutter‐Fella, Carolin M. and Saliba, Michael},
abstractNote = {Abstract All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat‐sensitive hybrid organic–inorganic counterparts. In particular, CsPbI 2 Br shows the highest potential for developing thermally‐stable perovskite solar cells (PSCs) among all‐inorganic compositions. However, controlling the crystallinity and morphology of all‐inorganic compositions is a significant challenge. Here, a simple, thermal gradient‐ and antisolvent‐free method is reported to control the crystallization of CsPbI 2 Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin‐coating and annealing to understand and optimize the evolving film properties. This leads to high‐quality perovskite films with micrometer‐scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open‐circuit voltage ( V OC ) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.},
doi = {10.1002/advs.202202441},
journal = {Advanced Science},
number = 23,
volume = 9,
place = {Germany},
year = {Sun Jun 19 00:00:00 EDT 2022},
month = {Sun Jun 19 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/advs.202202441

Save / Share:

Works referenced in this record:

High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency
journal, February 2018

  • Duan, Jialong; Zhao, Yuanyuan; He, Benlin
  • Angewandte Chemie International Edition, Vol. 57, Issue 14
  • DOI: 10.1002/anie.201800019

Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells
journal, January 2020

  • Malekshahi Byranvand, Mahdi; Behboodi-Sadabad, Farid; Alrhman Eliwi, Abed
  • Journal of Materials Chemistry A, Vol. 8, Issue 38
  • DOI: 10.1039/D0TA06646J

Symmetries and pattern selection in Rayleigh-Bénard convection
journal, March 1984


All‐Inorganic Cesium‐Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules
journal, May 2021

  • Montecucco, Riccardo; Quadrivi, Eleonora; Po, Riccardo
  • Advanced Energy Materials, Vol. 11, Issue 23
  • DOI: 10.1002/aenm.202100672

Minimizing Open-Circuit voltage deficit via interface engineering for highly efficient CsPbI2Br perovskite solar cells
journal, August 2021


Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes
journal, June 2022

  • Byranvand, Mahdi Malekshahi; Otero‐Martínez, Clara; Ye, Junzhi
  • Advanced Optical Materials, Vol. 10, Issue 14
  • DOI: 10.1002/adom.202200423

Optical Absorption‐Based In Situ Characterization of Halide Perovskites
journal, March 2020


Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
journal, January 2020


Strontium-Doped Low-Temperature-Processed CsPbI 2 Br Perovskite Solar Cells
journal, September 2017


Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber
journal, June 2018


Current Density Mismatch in Perovskite Solar Cells
journal, August 2020


Finding junction partners for CsPbI3 in a two-terminal tandem solar cell: A theoretical prospect
journal, September 2020


Addressing the stability issue of perovskite solar cells for commercial applications
journal, December 2018


VOC Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI2Br Perovskite Solar Cells
journal, May 2020

  • Guo, Zhanglin; Jena, Ajay Kumar; Takei, Izuru
  • Journal of the American Chemical Society, Vol. 142, Issue 21
  • DOI: 10.1021/jacs.0c02227

Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells
journal, February 2016

  • Meloni, Simone; Moehl, Thomas; Tress, Wolfgang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10334

Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
journal, October 2018

  • Turren-Cruz, Silver-Hamill; Hagfeldt, Anders; Saliba, Michael
  • Science, Vol. 362, Issue 6413
  • DOI: 10.1126/science.aat3583

Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
journal, June 2021


Thermodynamically stabilized β-CsPbI 3 –based perovskite solar cells with efficiencies >18%
journal, August 2019


Synthetic Approaches for Halide Perovskite Thin Films
journal, November 2018


Making air-stable all-inorganic perovskite solar cells through dynamic hot-air
journal, August 2020


Morphology Controlling of All-Inorganic Perovskite at Low Temperature for Efficient Rigid and Flexible Solar Cells
journal, June 2018


Green-Solvent-Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells
journal, August 2017

  • Lee, Junwoo; Malekshahi Byranvand, Mahdi; Kang, Gyeongho
  • Journal of the American Chemical Society, Vol. 139, Issue 35
  • DOI: 10.1021/jacs.7b04949

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
journal, July 2014

  • Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan
  • Nature Materials, Vol. 13, Issue 9, p. 897-903
  • DOI: 10.1038/nmat4014

Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells
journal, June 2017

  • Nam, Jae Keun; Jung, Myung Sun; Chai, Sung Uk
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 13
  • DOI: 10.1021/acs.jpclett.7b01067

Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films
journal, January 2017

  • Wang, Qi; Chen, Bo; Liu, Ye
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE02941H

Structurally Reinforced All‐Inorganic CsPbI 2 Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds
journal, June 2020


In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics
journal, January 2014

  • Abdelsamie, Maged; Zhao, Kui; Niazi, Muhammad R.
  • Journal of Materials Chemistry C, Vol. 2, Issue 17
  • DOI: 10.1039/c3tc32077d

Encapsulation Strategies for Highly Stable Perovskite Solar Cells under Severe Stress Testing: Damp Heat, Freezing, and Outdoor Illumination Conditions
journal, September 2021

  • Mohammadi, Mahdi; Gholipour, Somayeh; Malekshahi Byranvand, Mahdi
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 38
  • DOI: 10.1021/acsami.1c11628

Anomalous Hysteresis in Perovskite Solar Cells
journal, April 2014

  • Snaith, Henry J.; Abate, Antonio; Ball, James M.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 9
  • DOI: 10.1021/jz500113x

Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base
journal, January 2020


Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells
journal, March 2021


How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr 3 Cells
journal, June 2015

  • Kulbak, Michael; Cahen, David; Hodes, Gary
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00968

Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells
journal, July 2017


Minimizing non-radiative recombination losses in perovskite solar cells
journal, November 2019


Efficient perovskite solar cells via improved carrier management
journal, February 2021


Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells
journal, January 2021

  • Saki, Zahra; Byranvand, Mahdi Malekshahi; Taghavinia, Nima
  • Energy & Environmental Science, Vol. 14, Issue 11
  • DOI: 10.1039/D1EE02018H

Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: molecular weights, photovoltaic performance, and thermal stability
journal, January 2018

  • Lee, Junwoo; Lee, Tack Ho; Byranvand, Mahdi Malekshahi
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/C8TA00479J

Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films
journal, March 2021

  • Abdelsamie, Maged; Li, Tianyang; Babbe, Finn
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 11
  • DOI: 10.1021/acsami.0c22630

One-Year stable perovskite solar cells by 2D/3D interface engineering
journal, June 2017

  • Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15684

Efficient and Stable All‐Inorganic Perovskite Solar Cells
journal, September 2020


Large Scale Structures in Rayleigh-Bénard Convection at High Rayleigh Numbers
journal, August 2003


Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI 3 perovskite phase for high-efficiency solar cells
journal, September 2017


Electrical Loss Management by Molecularly Manipulating Dopant‐free Poly(3‐hexylthiophene) towards 16.93 % CsPbI 2 Br Solar Cells
journal, June 2021

  • Li, Ming‐Hua; Shao, Jiang‐Yang; Jiang, Yan
  • Angewandte Chemie International Edition, Vol. 60, Issue 30
  • DOI: 10.1002/anie.202105176

Cs 0.15 FA 0.85 PbI 3 perovskite solar cells for concentrator photovoltaic applications
journal, January 2018

  • Troughton, Joel; Gasparini, Nicola; Baran, Derya
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/C8TA05639K

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
journal, April 2021


Roadmap on organic–inorganic hybrid perovskite semiconductors and devices
journal, October 2021

  • Schmidt-Mende, Lukas; Dyakonov, Vladimir; Olthof, Selina
  • APL Materials, Vol. 9, Issue 10
  • DOI: 10.1063/5.0047616

Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells
journal, March 2018


Device Architecture Engineering: Progress toward Next Generation Perovskite Solar Cells
journal, June 2021

  • Webb, Thomas; Sweeney, Stephen J.; Zhang, Wei
  • Advanced Functional Materials, Vol. 31, Issue 35
  • DOI: 10.1002/adfm.202103121

Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics
journal, November 2018


Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite
journal, June 2015

  • Conings, Bert; Drijkoningen, Jeroen; Gauquelin, Nicolas
  • Advanced Energy Materials, Vol. 5, Issue 15
  • DOI: 10.1002/aenm.201500477

Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells
journal, February 2016

  • Sutton, Rebecca J.; Eperon, Giles E.; Miranda, Laura
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502458

Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells
journal, October 2019


Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells via hydrophobic ligand coordination
journal, January 2018

  • Huang, Guangguang; Wang, Chunlei; Zhang, Hao
  • Journal of Materials Chemistry A, Vol. 6, Issue 6
  • DOI: 10.1039/C7TA09646A

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Perovskites: weaving a network of knowledge beyond photovoltaics
journal, January 2022

  • Aranda, Clara A.; Byranvand, Mahdi Malekshahi; Essig, Stephanie
  • Journal of Materials Chemistry A
  • DOI: 10.1039/d2ta01135b

Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells
journal, February 2021


Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%
journal, September 2021


Heat dissipation effects on the stability of planar perovskite solar cells
journal, January 2020

  • Choi, Kyoungwon; Lee, Junwoo; Choi, Hyuntae
  • Energy & Environmental Science, Vol. 13, Issue 12
  • DOI: 10.1039/D0EE02859B

Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared Annealing
journal, September 2018

  • Sanchez, Sandy; Christoph, Neururer; Grobety, Bernard
  • Advanced Energy Materials, Vol. 8, Issue 30
  • DOI: 10.1002/aenm.201802060

Defect Passivation in Lead‐Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells
journal, May 2021

  • Ye, Junzhi; Byranvand, Mahdi Malekshahi; Martínez, Clara Otero
  • Angewandte Chemie, Vol. 133, Issue 40
  • DOI: 10.1002/ange.202102360

Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures
journal, January 2015

  • Deng, Yehao; Wang, Qi; Yuan, Yongbo
  • Materials Horizons, Vol. 2, Issue 6
  • DOI: 10.1039/C5MH00126A

Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells
journal, January 2019


Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells
journal, July 2021


Conformal quantum dot–SnO 2 layers as electron transporters for efficient perovskite solar cells
journal, January 2022


Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling
journal, January 2018

  • Cheacharoen, Rongrong; Rolston, Nicholas; Harwood, Duncan
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02564E

Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%
journal, January 2017

  • Ding, Bin; Li, Yan; Huang, Shi-Yu
  • Journal of Materials Chemistry A, Vol. 5, Issue 15
  • DOI: 10.1039/C7TA00027H

Acetone-assisted precursor engineering enables low-temperature fabrication of CsPbI2Br perovskite for efficient solar cells
journal, January 2021


Tin-based halide perovskite materials: properties and applications
journal, January 2022

  • Byranvand, Mahdi Malekshahi; Zuo, Weiwei; Imani, Roghayeh
  • Chemical Science, Vol. 13, Issue 23
  • DOI: 10.1039/d2sc01914k

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency Exceeding 13%
journal, February 2018

  • Liu, Chong; Li, Wenzhe; Zhang, Cuiling
  • Journal of the American Chemical Society, Vol. 140, Issue 11
  • DOI: 10.1021/jacs.7b13229

Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells
journal, January 2018