DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes

Abstract

Abstract. We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the elastic–viscous–plastic (EVP) rheology and the variational discretization of the internal stress divergence operator used by CICE, but adapted for the polygonal cells of MPAS meshes, or alternatively an integral (“finite-volume”) formulation of the stress divergence operator. An incremental remapping advection scheme is used for mass and tracer transport. We validate these formulations with idealized test cases, both planar and on the sphere. The variational scheme displays lower errors than the finite-volume formulation for the strain rate operator but higher errors for the stress divergence operator. The variational stress divergence operator displays increased errors around the pentagonal cells of a quasi-uniform mesh, which is ameliorated with an alternate formulation for the operator. MPAS-Seaice shares the sophisticated column physics and biogeochemistry of CICE and when used with quadrilateral meshes can reproduce the results of CICE. We have used global simulations with realistic forcing to validate MPAS-Seaice against similar simulations with CICEmore » and against observations. We find very similar results compared to CICE, with differences explained by minor differences in implementation such as with interpolation between the primary and dual meshes at coastlines. We have assessed the computational performance of the model, which, because it is unstructured, runs with 70 % of the throughput of CICE for a comparison quadrilateral simulation. The SCVT meshes used by MPAS-Seaice allow removal of equatorial model cells and flexibility in domain decomposition, improving model performance. MPAS-Seaice is the current sea-ice component of the Energy Exascale Earth System Model (E3SM).« less

Authors:
ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ;
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC). Biological and Environmental Research (BER)
OSTI Identifier:
1867040
Alternate Identifier(s):
OSTI ID: 1880472
Report Number(s):
LA-UR-18-21850
Journal ID: ISSN 1991-9603
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Published Article
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online) Journal Volume: 15 Journal Issue: 9; Journal ID: ISSN 1991-9603
Publisher:
Copernicus GmbH
Country of Publication:
Germany
Language:
English
Subject:
58 GEOSCIENCES; earth sciences

Citation Formats

Turner, Adrian K., Lipscomb, William H., Hunke, Elizabeth C., Jacobsen​​​​​​​, Douglas W., Jeffery, Nicole, Engwirda, Darren, Ringler, Todd D., and Wolfe, Jonathan D. MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes. Germany: N. p., 2022. Web. doi:10.5194/gmd-15-3721-2022.
Turner, Adrian K., Lipscomb, William H., Hunke, Elizabeth C., Jacobsen​​​​​​​, Douglas W., Jeffery, Nicole, Engwirda, Darren, Ringler, Todd D., & Wolfe, Jonathan D. MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes. Germany. https://doi.org/10.5194/gmd-15-3721-2022
Turner, Adrian K., Lipscomb, William H., Hunke, Elizabeth C., Jacobsen​​​​​​​, Douglas W., Jeffery, Nicole, Engwirda, Darren, Ringler, Todd D., and Wolfe, Jonathan D. Tue . "MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes". Germany. https://doi.org/10.5194/gmd-15-3721-2022.
@article{osti_1867040,
title = {MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes},
author = {Turner, Adrian K. and Lipscomb, William H. and Hunke, Elizabeth C. and Jacobsen​​​​​​​, Douglas W. and Jeffery, Nicole and Engwirda, Darren and Ringler, Todd D. and Wolfe, Jonathan D.},
abstractNote = {Abstract. We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the elastic–viscous–plastic (EVP) rheology and the variational discretization of the internal stress divergence operator used by CICE, but adapted for the polygonal cells of MPAS meshes, or alternatively an integral (“finite-volume”) formulation of the stress divergence operator. An incremental remapping advection scheme is used for mass and tracer transport. We validate these formulations with idealized test cases, both planar and on the sphere. The variational scheme displays lower errors than the finite-volume formulation for the strain rate operator but higher errors for the stress divergence operator. The variational stress divergence operator displays increased errors around the pentagonal cells of a quasi-uniform mesh, which is ameliorated with an alternate formulation for the operator. MPAS-Seaice shares the sophisticated column physics and biogeochemistry of CICE and when used with quadrilateral meshes can reproduce the results of CICE. We have used global simulations with realistic forcing to validate MPAS-Seaice against similar simulations with CICE and against observations. We find very similar results compared to CICE, with differences explained by minor differences in implementation such as with interpolation between the primary and dual meshes at coastlines. We have assessed the computational performance of the model, which, because it is unstructured, runs with 70 % of the throughput of CICE for a comparison quadrilateral simulation. The SCVT meshes used by MPAS-Seaice allow removal of equatorial model cells and flexibility in domain decomposition, improving model performance. MPAS-Seaice is the current sea-ice component of the Energy Exascale Earth System Model (E3SM).},
doi = {10.5194/gmd-15-3721-2022},
journal = {Geoscientific Model Development (Online)},
number = 9,
volume = 15,
place = {Germany},
year = {Tue May 10 00:00:00 EDT 2022},
month = {Tue May 10 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/gmd-15-3721-2022

Save / Share:

Works referenced in this record:

Deep convection in the World Ocean
journal, January 1983


Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2)
journal, January 2019

  • Koldunov, Nikolay V.; Aizinger, Vadym; Rakowsky, Natalja
  • Geoscientific Model Development, Vol. 12, Issue 9
  • DOI: 10.5194/gmd-12-3991-2019

Global atmospheric forcing data for Arctic ice-ocean modeling
journal, January 2007

  • Hunke, Elizabeth C.; Holland, Marika M.
  • Journal of Geophysical Research, Vol. 112, Issue C4
  • DOI: 10.1029/2006JC003640

The global climatology of an interannually varying air–sea flux data set
journal, August 2008


Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model
journal, February 2015

  • Turner, Adrian K.; Hunke, Elizabeth C.
  • Journal of Geophysical Research: Oceans, Vol. 120, Issue 2
  • DOI: 10.1002/2014JC010358

Finite-Element Sea Ice Model (FESIM), version 2
journal, January 2015

  • Danilov, S.; Wang, Q.; Timmermann, R.
  • Geoscientific Model Development, Vol. 8, Issue 6
  • DOI: 10.5194/gmd-8-1747-2015

An Elastic–Viscous–Plastic Model for Sea Ice Dynamics
journal, September 1997


Incorporation of a physically based melt pond scheme into the sea ice component of a climate model
journal, January 2010

  • Flocco, Daniela; Feltham, Daniel L.; Turner, Adrian K.
  • Journal of Geophysical Research, Vol. 115, Issue C8
  • DOI: 10.1029/2009JC005568

Sea-ice dynamics on triangular grids
journal, March 2021


A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids
journal, April 2008

  • Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian
  • Journal of Computational Physics, Vol. 227, Issue 8
  • DOI: 10.1016/j.jcp.2007.11.026

Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1
null, January 1996

  • Cavalieri, Donald
  • NASA National Snow and Ice Data Center Distributed Active Archive Center
  • DOI: 10.5067/8GQ8LZQVL0VL

Investigating controls on sea ice algal production using E3SMv1.1-BGC
journal, February 2020

  • Jeffery, Nicole; Maltrud, Mathew E.; Hunke, Elizabeth C.
  • Annals of Glaciology
  • DOI: 10.1017/aog.2020.7

Uncertainty in modeled Arctic sea ice volume
journal, January 2011

  • Schweiger, Axel; Lindsay, Ron; Zhang, Jinlun
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JC007084

Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice
journal, March 2012

  • Holland, Marika M.; Bailey, David A.; Briegleb, Bruce P.
  • Journal of Climate, Vol. 25, Issue 5
  • DOI: 10.1175/JCLI-D-11-00078.1

The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model
journal, January 2014

  • Wang, Q.; Danilov, S.; Sidorenko, D.
  • Geoscientific Model Development, Vol. 7, Issue 2
  • DOI: 10.5194/gmd-7-663-2014

An energy-conserving thermodynamic model of sea ice
journal, July 1999

  • Bitz, C. M.; Lipscomb, William H.
  • Journal of Geophysical Research: Oceans, Vol. 104, Issue C7
  • DOI: 10.1029/1999JC900100

Level-ice melt ponds in the Los Alamos sea ice model, CICE
journal, November 2013


A Dynamic Thermodynamic Sea Ice Model
journal, July 1979


A General Circulation Model for Upper Ocean Simulation
journal, November 1988


An Introduction to Fluid Dynamics
book, June 2012


Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
journal, January 2020


A strength implicit correction scheme for the viscous-plastic sea ice model
journal, January 2004


Variability of Antarctic sea ice 1979–1998
journal, January 2002


Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling: GRAVITY DRAINAGE
journal, May 2013

  • Turner, Adrian K.; Hunke, Elizabeth C.; Bitz, Cecilia M.
  • Journal of Geophysical Research: Oceans, Vol. 118, Issue 5
  • DOI: 10.1002/jgrc.20171

An unstructured-grid, finite-volume sea ice model: Development, validation, and application
journal, January 2011

  • Gao, Guoping; Chen, Changsheng; Qi, Jianhua
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JC006688

A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
journal, January 1998


JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere
journal, January 2017


A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering
journal, September 2012

  • Skamarock, William C.; Klemp, Joseph B.; Duda, Michael G.
  • Monthly Weather Review, Vol. 140, Issue 9
  • DOI: 10.1175/MWR-D-11-00215.1

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
journal, July 2019

  • Golaz, Jean‐Christophe; Caldwell, Peter M.; Van Roekel, Luke P.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2018MS001603

An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid
journal, August 2005

  • Lipscomb, William H.; Ringler, Todd D.
  • Monthly Weather Review, Vol. 133, Issue 8
  • DOI: 10.1175/MWR2983.1

Viscous–Plastic Sea Ice Dynamics with the EVP Model: Linearization Issues
journal, June 2001


Modeling Sea Ice Transport Using Incremental Remapping
journal, June 2004


The Community Climate System Model Version 3 (CCSM3)
journal, June 2006

  • Collins, William D.; Bitz, Cecilia M.; Blackmon, Maurice L.
  • Journal of Climate, Vol. 19, Issue 11
  • DOI: 10.1175/JCLI3761.1

Arctic sea ice variability and trends, 1979–2010
journal, January 2012


The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model
journal, January 2008


Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
journal, July 1979


Arctic sea ice extents, areas, and trends, 1978-1996
journal, September 1999

  • Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per
  • Journal of Geophysical Research: Oceans, Vol. 104, Issue C9
  • DOI: 10.1029/1999JC900082

Remapping the thickness distribution in sea ice models
journal, July 2001

  • Lipscomb, William H.
  • Journal of Geophysical Research: Oceans, Vol. 106, Issue C7
  • DOI: 10.1029/2000JC000518

Ridging, strength, and stability in high-resolution sea ice models
journal, January 2007

  • Lipscomb, William H.; Hunke, Elizabeth C.; Maslowski, Wieslaw
  • Journal of Geophysical Research, Vol. 112, Issue C3
  • DOI: 10.1029/2005JC003355

A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids
journal, May 2010

  • Ringler, T. D.; Thuburn, J.; Klemp, J. B.
  • Journal of Computational Physics, Vol. 229, Issue 9
  • DOI: 10.1016/j.jcp.2009.12.007

Interpolants within Convex Polygons: Wachspress’ Shape Functions
journal, January 2003


MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
journal, January 2018

  • Hoffman, Matthew J.; Perego, Mauro; Price, Stephen F.
  • Geoscientific Model Development, Vol. 11, Issue 9
  • DOI: 10.5194/gmd-11-3747-2018

Incremental Remapping as a Transport/Advection Algorithm
journal, May 2000

  • Dukowicz, John K.; Baumgardner, John R.
  • Journal of Computational Physics, Vol. 160, Issue 1
  • DOI: 10.1006/jcph.2000.6465

A multi-resolution approach to global ocean modeling
journal, September 2013


The Community Earth System Model Version 2 (CESM2)
journal, February 2020

  • Danabasoglu, G.; Lamarque, J. ‐F.; Bacmeister, J.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 2
  • DOI: 10.1029/2019MS001916

Modeling the winter-spring transition of first-year ice in the western Weddell Sea
journal, September 2014

  • Jeffery, N.; Hunke, E. C.
  • Journal of Geophysical Research: Oceans, Vol. 119, Issue 9
  • DOI: 10.1002/2013JC009634

High degree efficient symmetrical Gaussian quadrature rules for the triangle
journal, June 1985

  • Dunavant, D. A.
  • International Journal for Numerical Methods in Engineering, Vol. 21, Issue 6
  • DOI: 10.1002/nme.1620210612

Explicit Generation of Orthogonal Grids for Ocean Models
journal, July 1996


Antarctic sea ice variability and trends, 1979–2010
journal, January 2012


The DOE E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystem‐Climate Responses to Historical Changes in Forcing
journal, September 2020

  • Burrows, S. M.; Maltrud, M.; Yang, X.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 9
  • DOI: 10.1029/2019MS001766

Coordinated Ocean-ice Reference Experiments (COREs)
journal, January 2009


A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies
journal, January 2009

  • Chen, Changsheng; Gao, Guoping; Qi, Jianhua
  • Journal of Geophysical Research, Vol. 114, Issue C8
  • DOI: 10.1029/2008JC004941

Modeling climate change: An assessment of sea ice and surface albedo feedbacks
journal, June 1989

  • Ingram, W. J.; Wilson, C. A.; Mitchell, J. F. B.
  • Journal of Geophysical Research: Atmospheres, Vol. 94, Issue D6
  • DOI: 10.1029/JD094iD06p08609