DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

Abstract

Abstract This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.

Authors:
ORCiD logo; ; ; ; ; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Department of the Navy, Office of Naval Research (ONR); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1866303
Alternate Identifier(s):
OSTI ID: 1880812
Grant/Contract Number:  
SC0021110; SC001257; AR0000775; AC02-05CH11231; SC0022199; SC0012573; AC05-00OR22725; DMR-2011754; N00014-20-1-2418; DMR20009; DMR20013
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 13 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Atomistic models; Computational chemistry; Computational methods; Computer science; Molecular dynamics

Citation Formats

Batzner, Simon, Musaelian, Albert, Sun, Lixin, Geiger, Mario, Mailoa, Jonathan P., Kornbluth, Mordechai, Molinari, Nicola, Smidt, Tess E., and Kozinsky, Boris. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. United Kingdom: N. p., 2022. Web. doi:10.1038/s41467-022-29939-5.
Batzner, Simon, Musaelian, Albert, Sun, Lixin, Geiger, Mario, Mailoa, Jonathan P., Kornbluth, Mordechai, Molinari, Nicola, Smidt, Tess E., & Kozinsky, Boris. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. United Kingdom. https://doi.org/10.1038/s41467-022-29939-5
Batzner, Simon, Musaelian, Albert, Sun, Lixin, Geiger, Mario, Mailoa, Jonathan P., Kornbluth, Mordechai, Molinari, Nicola, Smidt, Tess E., and Kozinsky, Boris. Wed . "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials". United Kingdom. https://doi.org/10.1038/s41467-022-29939-5.
@article{osti_1866303,
title = {E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials},
author = {Batzner, Simon and Musaelian, Albert and Sun, Lixin and Geiger, Mario and Mailoa, Jonathan P. and Kornbluth, Mordechai and Molinari, Nicola and Smidt, Tess E. and Kozinsky, Boris},
abstractNote = {Abstract This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.},
doi = {10.1038/s41467-022-29939-5},
journal = {Nature Communications},
number = 1,
volume = 13,
place = {United Kingdom},
year = {Wed May 04 00:00:00 EDT 2022},
month = {Wed May 04 00:00:00 EDT 2022}
}

Works referenced in this record:

Isotope effects in liquid water via deep potential molecular dynamics
journal, October 2019


Atomic cluster expansion for accurate and transferable interatomic potentials
journal, January 2019


ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

NewtonNet: A Newtonian message passing network for deep learning of interatomic potentials and forces
journal, January 2022


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

FCHL revisited: Faster and more accurate quantum machine learning
journal, January 2020

  • Christensen, Anders S.; Bratholm, Lars A.; Faber, Felix A.
  • The Journal of Chemical Physics, Vol. 152, Issue 4
  • DOI: 10.1063/1.5126701

Ab initio thermodynamics of liquid and solid water
journal, January 2019

  • Cheng, Bingqing; Engel, Edgar A.; Behler, Jörg
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1815117116

Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
journal, November 2021

  • Kovács, Dávid Péter; Oord, Cas van der; Kucera, Jiri
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 12
  • DOI: 10.1021/acs.jctc.1c00647

Design and synthesis of the superionic conductor Na10SnP2S12
journal, March 2016

  • Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11009

On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
journal, March 2020

  • Vandermause, Jonathan; Torrisi, Steven B.; Batzner, Simon
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-0283-z

A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
journal, September 2019

  • Mailoa, Jonathan P.; Kornbluth, Mordechai; Batzner, Simon
  • Nature Machine Intelligence, Vol. 1, Issue 10
  • DOI: 10.1038/s42256-019-0098-0

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Multiple Bonding Configurations of Adsorbed Formate on Ag{111}
journal, January 1996

  • Sim, W. S.; Gardner, P.; King, D. A.
  • The Journal of Physical Chemistry, Vol. 100, Issue 30
  • DOI: 10.1021/jp9600726

How Fast-Folding Proteins Fold
journal, October 2011


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Deep Residual Learning for Image Recognition
conference, June 2016

  • He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing
  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • DOI: 10.1109/CVPR.2016.90

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
journal, May 2021

  • Park, Cheol Woo; Kornbluth, Mordechai; Vandermause, Jonathan
  • npj Computational Materials, Vol. 7, Issue 1
  • DOI: 10.1038/s41524-021-00543-3

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
journal, December 2021


Why Is Formate Synthesis Insensitive to Copper Surface Structures?
journal, December 2005

  • Wang, Guichang; Morikawa, Yoshitada; Matsumoto, Taketoshi
  • The Journal of Physical Chemistry B, Vol. 110, Issue 1
  • DOI: 10.1021/jp055689e

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
journal, April 2019

  • Unke, Oliver T.; Meuwly, Markus
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 6
  • DOI: 10.1021/acs.jctc.9b00181

Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries
journal, February 2020

  • Westover, Andrew S.; Kercher, Andrew K.; Kornbluth, Mordechai
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 10
  • DOI: 10.1021/acsami.9b20812

Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
journal, December 2017

  • Li, Wenwen; Ando, Yasunobu; Minamitani, Emi
  • The Journal of Chemical Physics, Vol. 147, Issue 21
  • DOI: 10.1063/1.4997242

First Principles Molecular Dynamics Study of Ziegler−Natta Heterogeneous Catalysis
journal, March 1998

  • Boero, Mauro; Parrinello, Michele; Terakura, Kiyoyuki
  • Journal of the American Chemical Society, Vol. 120, Issue 12
  • DOI: 10.1021/ja972367i

cp2k: atomistic simulations of condensed matter systems
journal, June 2013

  • Hutter, Jürg; Iannuzzi, Marcella; Schiffmann, Florian
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 1
  • DOI: 10.1002/wcms.1159

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens
journal, June 2020

  • Devereux, Christian; Smith, Justin S.; Davis, Kate K.
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 7
  • DOI: 10.1021/acs.jctc.0c00121