DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry

Abstract

Time-domain thermoreflectance (TDTR) is a well-established pump–probe method for measuring thermal conductivity and interface conductance of multilayers. Interpreting signals in a TDTR experiment requires a thermal model. In standard front/front TDTR experiments, both pump and probe beams typically irradiate the surface of a multilayer. As a result, existing thermal models for interpreting thermoreflectance experiments assume that the pump and probe beams both interact with the surface layer. Here, we present a frequency-domain solution to the heat-diffusion equation of a multilayer in response to nonhomogeneous laser heating. This model allows analysis of experiments where the pump and probe beams irradiate opposite sides of a multilayer. We call such a geometry a front/back experiment to differentiate such experiments from standard TDTR experiments. As an example, we consider a 60nm amorphous Si film. We consider how signals differ in a front/front vs front/back geometry and compare thermal model predictions to experimental data.

Authors:
; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1860943
Grant/Contract Number:  
SC0021230
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Name: Journal of Applied Physics Journal Volume: 131 Journal Issue: 13; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Peng, Wanyue, and Wilson, Richard B. Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry. United States: N. p., 2022. Web. doi:10.1063/5.0082549.
Peng, Wanyue, & Wilson, Richard B. Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry. United States. https://doi.org/10.1063/5.0082549
Peng, Wanyue, and Wilson, Richard B. Mon . "Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry". United States. https://doi.org/10.1063/5.0082549.
@article{osti_1860943,
title = {Thermal model for time-domain thermoreflectance experiments in a laser-flash geometry},
author = {Peng, Wanyue and Wilson, Richard B.},
abstractNote = {Time-domain thermoreflectance (TDTR) is a well-established pump–probe method for measuring thermal conductivity and interface conductance of multilayers. Interpreting signals in a TDTR experiment requires a thermal model. In standard front/front TDTR experiments, both pump and probe beams typically irradiate the surface of a multilayer. As a result, existing thermal models for interpreting thermoreflectance experiments assume that the pump and probe beams both interact with the surface layer. Here, we present a frequency-domain solution to the heat-diffusion equation of a multilayer in response to nonhomogeneous laser heating. This model allows analysis of experiments where the pump and probe beams irradiate opposite sides of a multilayer. We call such a geometry a front/back experiment to differentiate such experiments from standard TDTR experiments. As an example, we consider a 60nm amorphous Si film. We consider how signals differ in a front/front vs front/back geometry and compare thermal model predictions to experimental data.},
doi = {10.1063/5.0082549},
journal = {Journal of Applied Physics},
number = 13,
volume = 131,
place = {United States},
year = {Mon Apr 04 00:00:00 EDT 2022},
month = {Mon Apr 04 00:00:00 EDT 2022}
}

Works referenced in this record:

Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer
journal, February 2014


CCD-based thermoreflectance microscopy: principles and applications
journal, June 2009


High sensitivity pump–probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator
journal, February 2020

  • Gomez, Michael J.; Liu, Kexin; Lee, Jonathan G.
  • Review of Scientific Instruments, Vol. 91, Issue 2
  • DOI: 10.1063/1.5126121

Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance
journal, January 2017

  • Rodin, David; Yee, Shannon K.
  • Review of Scientific Instruments, Vol. 88, Issue 1
  • DOI: 10.1063/1.4973297

Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
journal, October 2018

  • Jiang, Puqing; Qian, Xin; Yang, Ronggui
  • Journal of Applied Physics, Vol. 124, Issue 16
  • DOI: 10.1063/1.5046944

Invited Review Article: Error and uncertainty in Raman thermal conductivity measurements
journal, April 2015

  • Beechem, Thomas; Yates, Luke; Graham, Samuel
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4918623

Ultimate-resolution thermal spectroscopy in time domain thermoreflectance (TDTR)
journal, August 2020

  • Zenji, A.; Rampnoux, J. M.; Grauby, S.
  • Journal of Applied Physics, Vol. 128, Issue 6
  • DOI: 10.1063/5.0015391

Two-channel model for nonequilibrium thermal transport in pump-probe experiments
journal, October 2013


Spin-dependent thermal transport perpendicular to the planes of Co/Cu multilayers
journal, April 2015


Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices
journal, January 2018


Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
journal, October 2019

  • Olson, David H.; Braun, Jeffrey L.; Hopkins, Patrick E.
  • Journal of Applied Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.5120310

A steady-state thermoreflectance method to measure thermal conductivity
journal, February 2019

  • Braun, Jeffrey L.; Olson, David H.; Gaskins, John T.
  • Review of Scientific Instruments, Vol. 90, Issue 2
  • DOI: 10.1063/1.5056182

Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Thermal conductance of strongly bonded metal-oxide interfaces
journal, March 2015


A frequency-domain thermoreflectance method for the characterization of thermal properties
journal, September 2009

  • Schmidt, Aaron J.; Cheaito, Ramez; Chiesa, Matteo
  • Review of Scientific Instruments, Vol. 80, Issue 9
  • DOI: 10.1063/1.3212673

Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots
journal, October 2012

  • Feser, Joseph P.; Cahill, David G.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757863

Modeling optical absorption for thermoreflectance measurements
journal, March 2016

  • Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.
  • Journal of Applied Physics, Vol. 119, Issue 9
  • DOI: 10.1063/1.4943176

Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method
journal, August 2018

  • Li, Man; Kang, Joon Sang; Hu, Yongjie
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5026028

Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study
journal, May 2017

  • Braun, Jeffrey L.; Hopkins, Patrick E.
  • Journal of Applied Physics, Vol. 121, Issue 17
  • DOI: 10.1063/1.4982915

Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition
journal, December 2015

  • Regner, K. T.; Wei, L. C.; Malen, J. A.
  • Journal of Applied Physics, Vol. 118, Issue 23
  • DOI: 10.1063/1.4937995

Differentiating contributions of electrons and phonons to the thermoreflectance spectra of gold
journal, October 2021


Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Thermal characterization of gallium nitride p-i-n diodes
journal, February 2018

  • Dallas, J.; Pavlidis, G.; Chatterjee, B.
  • Applied Physics Letters, Vol. 112, Issue 7
  • DOI: 10.1063/1.5006796

Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry
journal, October 2014

  • Feser, Joseph P.; Liu, Jun; Cahill, David G.
  • Review of Scientific Instruments, Vol. 85, Issue 10
  • DOI: 10.1063/1.4897622

Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity
journal, November 2019

  • Yuan, Chao; Waller, William M.; Kuball, Martin
  • Review of Scientific Instruments, Vol. 90, Issue 11
  • DOI: 10.1063/1.5099961

Phonon and Thermal Properties of Quasi-Two-Dimensional FePS 3 and MnPS 3 Antiferromagnetic Semiconductors
journal, January 2020


Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology
journal, December 2011

  • Dilhaire, S.; Pernot, G.; Calbris, G.
  • Journal of Applied Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.3665129