DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hamiltonian formulations for perturbed dissipationless plasma equations

Abstract

The Hamiltonian formulations for the perturbed Vlasov–Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD) equations are expressed in terms of the perturbation derivative F / ϵ [ F , S ] of an arbitrary functional F [ ψ ] of the Vlasov–Maxwell fields ψ = ( f , E , B ) or the ideal MHD fields ψ = ( ρ , u , s , B ) , which are assumed to depend continuously on the (dimensionless) perturbation parameter ϵ. In this study, [ , ] denotes the functional Poisson bracket for each set of plasma equations and the perturbation action functional S is said to generate dynamically accessible perturbations of the plasma fields. The new Hamiltonian perturbation formulation introduces a framework for functional perturbation methods in plasma physics and highlights the crucial roles played by polarization and magnetization in Vlasov–Maxwell and ideal MHD perturbation theories. One application considered in this paper is a formulation of plasma stability that guarantees dynamical accessibility and leads to a natural generalization to higher-order perturbation theory.

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Saint Michael's College, Colchester, VT (United States). Dept. of Physics
  2. Aix-Marseille Univ., Marseille (France). Centre National de la Recherche Scientifique (CNRS)
Publication Date:
Research Org.:
Saint Michael's College, Colchester, VT (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); European Atomic Energy Community (Euratom)
OSTI Identifier:
1851859
Alternate Identifier(s):
OSTI ID: 1742060
Grant/Contract Number:  
SC0014032; PHY-1805164; 633053
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Hamiltonian mechanics; Maxwell equations; calculus of variations; magnetohydrodynamics; perturbation theory; Vlasov equation; electromagnetism; vector fields; magnetization

Citation Formats

Brizard, A. J., and Chandre, C. Hamiltonian formulations for perturbed dissipationless plasma equations. United States: N. p., 2020. Web. doi:10.1063/5.0028471.
Brizard, A. J., & Chandre, C. Hamiltonian formulations for perturbed dissipationless plasma equations. United States. https://doi.org/10.1063/5.0028471
Brizard, A. J., and Chandre, C. Wed . "Hamiltonian formulations for perturbed dissipationless plasma equations". United States. https://doi.org/10.1063/5.0028471. https://www.osti.gov/servlets/purl/1851859.
@article{osti_1851859,
title = {Hamiltonian formulations for perturbed dissipationless plasma equations},
author = {Brizard, A. J. and Chandre, C.},
abstractNote = {The Hamiltonian formulations for the perturbed Vlasov–Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD) equations are expressed in terms of the perturbation derivative ∂ F / ∂ ϵ ≡ [ F , S ] of an arbitrary functional F [ ψ ] of the Vlasov–Maxwell fields ψ = ( f , E , B ) or the ideal MHD fields ψ = ( ρ , u , s , B ), which are assumed to depend continuously on the (dimensionless) perturbation parameter ϵ. In this study, [ , ] denotes the functional Poisson bracket for each set of plasma equations and the perturbation action functional S is said to generate dynamically accessible perturbations of the plasma fields. The new Hamiltonian perturbation formulation introduces a framework for functional perturbation methods in plasma physics and highlights the crucial roles played by polarization and magnetization in Vlasov–Maxwell and ideal MHD perturbation theories. One application considered in this paper is a formulation of plasma stability that guarantees dynamical accessibility and leads to a natural generalization to higher-order perturbation theory.},
doi = {10.1063/5.0028471},
journal = {Physics of Plasmas},
number = 12,
volume = 27,
place = {United States},
year = {Wed Dec 23 00:00:00 EST 2020},
month = {Wed Dec 23 00:00:00 EST 2020}
}

Works referenced in this record:

Variational principle for linear stability of flowing plasmas in Hall magnetohydrodynamics
journal, February 2006

  • Hirota, M.; Yoshida, Z.; Hameiri, E.
  • Physics of Plasmas, Vol. 13, Issue 2
  • DOI: 10.1063/1.2169734

Hamiltonian theory of guiding-center motion
journal, May 2009


Theoretical plasma physics
journal, November 2019


Oscillation center quasilinear theory
journal, January 1973


Lifting of the Vlasov–Maxwell bracket by Lie-transform method
journal, December 2016

  • Brizard, A. J.; Morrison, P. J.; Burby, J. W.
  • Journal of Plasma Physics, Vol. 82, Issue 6
  • DOI: 10.1017/S0022377816001161

Variational Principle in Magnetohydrodynamics
journal, January 1969


Variational principles for equilibrium states with plasma flow
journal, September 1998


Simplified action principle formulation of the magnetohydrodynamic equations
journal, January 1985

  • Nassar, Anto^nio B.; Putterman, Seth J.
  • Physics of Fluids, Vol. 28, Issue 3
  • DOI: 10.1063/1.865091

A general theory for gauge-free lifting
journal, January 2013


Renormalised canonical perturbation theory for stochastic propagators
journal, December 1976


Nonlinear ideal magnetohydrodynamics instabilities
journal, July 1993

  • Pfirsch, D.; Sudan, R. N.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 7
  • DOI: 10.1063/1.860792

Beyond linear gyrocenter polarization in gyrokinetic theory
journal, September 2013


On the dynamical reduction of the Vlasov equation
journal, February 2008


Variational approaches to the problems of plasma stability and of nonlinear plasma dynamics
journal, November 2000

  • Ilgisonis, V. I.; Pastukhov, V. P.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 72, Issue 10
  • DOI: 10.1134/1.1343158

The free energy of Maxwell–Vlasov equilibria
journal, June 1990

  • Morrison, P. J.; Pfirsch, D.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 6
  • DOI: 10.1063/1.859246

Hamiltonian perturbation theory in noncanonical coordinates
journal, May 1982

  • Littlejohn, Robert G.
  • Journal of Mathematical Physics, Vol. 23, Issue 5
  • DOI: 10.1063/1.525429

Variational formulation for weakly nonlinear perturbations of ideal magnetohydrodynamics
journal, January 2011


Perturbation Approach to Nonlinear Vlasov Equation
journal, February 1970

  • Kawakami, Ichiro
  • Journal of the Physical Society of Japan, Vol. 28, Issue 2
  • DOI: 10.1143/JPSJ.28.505

Three‐ and four‐wave interactions in plasmas
journal, June 1978

  • Boyd, T. J. M.; Turner, J. G.
  • Journal of Mathematical Physics, Vol. 19, Issue 6
  • DOI: 10.1063/1.523842

Hamiltonian and action principle formulations of plasma physics
journal, May 2005


Hamiltonian formulation of reduced magnetohydrodynamics
journal, January 1984

  • Morrison, P. J.; Hazeltine, R. D.
  • Physics of Fluids, Vol. 27, Issue 4
  • DOI: 10.1063/1.864718

A geometric view of Hamiltonian perturbation theory
journal, December 2001


Mini-conference on Hamiltonian and Lagrangian methods in fluid and plasma physics
journal, May 2003

  • Brizard, Alain J.; Tracy, Eugene R.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1564822

The Hamiltonian structure of the Maxwell-Vlasov equations
journal, March 1982


Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics
journal, September 1980


Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics.
journal, February 1982


Representation of arbitrary charge–current densities by polarization and magnetization fields
journal, November 1998

  • Goedecke, G. H.
  • American Journal of Physics, Vol. 66, Issue 11
  • DOI: 10.1119/1.19001

Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria
journal, January 2020

  • Kaltsas, D. A.; Throumoulopoulos, G. N.; Morrison, P. J.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5125573

Poisson brackets for fluids and plasmas
conference, January 1982

  • Morrison, Philip J.
  • AIP Conference Proceedings Volume 88
  • DOI: 10.1063/1.33633

An energy principle for hydromagnetic stability problems
journal, February 1958

  • Bernstein, I. B.; Frieman, E. A.; Kruskal, Martin David
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 244, Issue 1236, p. 17-40
  • DOI: 10.1098/rspa.1958.0023

Classical Electricity and Magnetism
journal, June 1956

  • Panofsky, W. K. H.; Phillips, Melba; Morse, P. M.
  • Physics Today, Vol. 9, Issue 6
  • DOI: 10.1063/1.3059993

Perturbative variational formulation of the Vlasov-Maxwell equations
journal, November 2018


A method for Hamiltonian truncation: a four-wave example
journal, March 2016

  • Viscondi, Thiago F.; Caldas, Iberê L.; Morrison, Philip J.
  • Journal of Physics A: Mathematical and Theoretical, Vol. 49, Issue 16
  • DOI: 10.1088/1751-8113/49/16/165501

An Action Principle for Magnetohydrodynamics
journal, December 1963

  • Calkin, M. G.
  • Canadian Journal of Physics, Vol. 41, Issue 12
  • DOI: 10.1139/p63-216

Gauge-independent canonical formulation of relativistic plasma theory
journal, December 1984

  • Bialynicki-Birula, Iwo; Hubbard, John C.; Turski, Lukasz A.
  • Physica A: Statistical Mechanics and its Applications, Vol. 128, Issue 3
  • DOI: 10.1016/0378-4371(84)90189-4

The Maxwell-Vlasov equations as a continuous hamiltonian system
journal, December 1980


Hamiltonian description of the ideal fluid
journal, April 1998


On the Stability of Plasma in Static Equilibrium
journal, January 1958

  • Kruskal, M. D.; Oberman, C. R.
  • Physics of Fluids, Vol. 1, Issue 4
  • DOI: 10.1063/1.1705885

Variational principles for reduced plasma physics
journal, May 2009


Hamiltonian gyrofluid reductions of gyrokinetic equations
journal, October 2019


Variational mean-fluctuation splitting and drift-fluid models
journal, June 2020


Dynamically accessible perturbations and magnetohydrodynamic stability
journal, July 2003


Foundations of nonlinear gyrokinetic theory
journal, April 2007


Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Theory
journal, September 2013

  • Andreussi, T.; Morrison, P. J.; Pegoraro, F.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4819779

The lie transform: A new approach to classical perturbation theory
conference, January 1978

  • Kaufman, Allan N.
  • AIP Conference Proceedings Vol. 46
  • DOI: 10.1063/1.31423

Quadratic free energy for the linearized gyrokinetic Vlasov–Maxwell equations
journal, August 1994


Derivation of the Hall and extended magnetohydrodynamics brackets
journal, June 2016

  • D'Avignon, Eric C.; Morrison, Philip J.; Lingam, Manasvi
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4952641

Ponderomotive effects in collisionless plasma: A Lie transform approach
journal, January 1981


Induced Dipoles in Electromagnetic Media in Motion
journal, January 2018

  • Roa-Neri, José-Antonio-Eduardo; Jiménez-Ramírez, José-Luis; Campos-Flores, Ignacio
  • Journal of Electromagnetic Analysis and Applications, Vol. 10, Issue 11
  • DOI: 10.4236/jemaa.2018.1011014

Free-energy expressions for Vlasov equilibria
journal, October 1989


On Hydromagnetic Stability of Stationary Equilibria
journal, October 1960


Simplified variational principles for non-barotropic magnetohydrodynamics
journal, March 2016


Hamilton-Jacobi theory applied to Vlasov's equation
journal, December 1966