DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal conductivity of the n = –5 and 10 members of the (SrTiO3)n SrO Ruddlesden–Popper superlattices

Abstract

Unlike many superlattice structures, Ruddlesden–Popper phases have atomically abrupt interfaces useful for interrogating how periodic atomic layers affect thermal properties. Here, we measure the thermal conductivity in thin films of the n = 1–5 and 10 members of the (SrTiO3)nSrO Ruddlesden–Popper superlattices grown by molecular-beam epitaxy and compare the results to a single crystal of the n = 1 Ruddlesden–Popper SrLaAlO4. The thermal conductivity cross-plane to the superlattice layering (k33) is measured using time-domain thermoreflectance as a function of temperature and the results are compared to first-principles calculations. The thermal conductivity of this homologous series decreases with increasing interface density. Characterization by x-ray diffraction and scanning transmission electron microscopy confirms that these samples have a Ruddlesden–Popper superlattice structure.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [3]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [7]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Univ. of Illinois at Urbana-Champaign, IL (United States)
  3. Univ. of Florida, Gainesville, FL (United States)
  4. Univ. of Florida, Gainesville, FL (United States); Chinese Academy of Sciences (CAS), Beijing (China); ; University of Chinese Academy of Sciences, Beijing (China)
  5. Samsung Electronics (South Korea)
  6. Missouri Univ. of Science and Technology, Rolla, MO (United States)
  7. Cornell Univ., Ithaca, NY (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY (United States); Leibniz Inst. for Crystal Growth (IKZ), Berlin (Germany)
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); US Army Research Office (ARO)
OSTI Identifier:
1850814
Alternate Identifier(s):
OSTI ID: 1769220
Grant/Contract Number:  
SC0002334; W31P4Q-08-1-0012; NNCI-2025233; DMR-1719875; OAC-1919789
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 9; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Physics

Citation Formats

Dawley, Natalie M., Pek, Ella K., Lee, Che-Hui, Ragasa, Eugene J., Xiong, Xue, Lee, Kiyoung, Phillpot, Simon R., Chernatynskiy, Aleksandr V., Cahill, David G., and Schlom, Darrell G. Thermal conductivity of the n = –5 and 10 members of the (SrTiO3)n SrO Ruddlesden–Popper superlattices. United States: N. p., 2021. Web. doi:10.1063/5.0037765.
Dawley, Natalie M., Pek, Ella K., Lee, Che-Hui, Ragasa, Eugene J., Xiong, Xue, Lee, Kiyoung, Phillpot, Simon R., Chernatynskiy, Aleksandr V., Cahill, David G., & Schlom, Darrell G. Thermal conductivity of the n = –5 and 10 members of the (SrTiO3)n SrO Ruddlesden–Popper superlattices. United States. https://doi.org/10.1063/5.0037765
Dawley, Natalie M., Pek, Ella K., Lee, Che-Hui, Ragasa, Eugene J., Xiong, Xue, Lee, Kiyoung, Phillpot, Simon R., Chernatynskiy, Aleksandr V., Cahill, David G., and Schlom, Darrell G. Mon . "Thermal conductivity of the n = –5 and 10 members of the (SrTiO3)n SrO Ruddlesden–Popper superlattices". United States. https://doi.org/10.1063/5.0037765. https://www.osti.gov/servlets/purl/1850814.
@article{osti_1850814,
title = {Thermal conductivity of the n = –5 and 10 members of the (SrTiO3)n SrO Ruddlesden–Popper superlattices},
author = {Dawley, Natalie M. and Pek, Ella K. and Lee, Che-Hui and Ragasa, Eugene J. and Xiong, Xue and Lee, Kiyoung and Phillpot, Simon R. and Chernatynskiy, Aleksandr V. and Cahill, David G. and Schlom, Darrell G.},
abstractNote = {Unlike many superlattice structures, Ruddlesden–Popper phases have atomically abrupt interfaces useful for interrogating how periodic atomic layers affect thermal properties. Here, we measure the thermal conductivity in thin films of the n = 1–5 and 10 members of the (SrTiO3)nSrO Ruddlesden–Popper superlattices grown by molecular-beam epitaxy and compare the results to a single crystal of the n = 1 Ruddlesden–Popper SrLaAlO4. The thermal conductivity cross-plane to the superlattice layering (k33) is measured using time-domain thermoreflectance as a function of temperature and the results are compared to first-principles calculations. The thermal conductivity of this homologous series decreases with increasing interface density. Characterization by x-ray diffraction and scanning transmission electron microscopy confirms that these samples have a Ruddlesden–Popper superlattice structure.},
doi = {10.1063/5.0037765},
journal = {Applied Physics Letters},
number = 9,
volume = 118,
place = {United States},
year = {Mon Mar 01 00:00:00 EST 2021},
month = {Mon Mar 01 00:00:00 EST 2021}
}

Works referenced in this record:

Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics
journal, May 2009

  • Wang, Yifeng; Lee, Kyu Hyoung; Ohta, Hiromichi
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3117943

Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3
journal, January 2011


Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


The compound Sr 3 Ti 2 O 7 and its structure
journal, January 1958


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


New compounds of the K 2 NIF 4 type
journal, August 1957


Structural Aspects of Phase Equilibria in the Strontium-Titanium-Oxygen System
journal, November 1988


An electron microscope study of perovskite-related oxides in the SrTiO system
journal, August 1977


Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics
journal, October 2013

  • Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan
  • Nature, Vol. 502, Issue 7472
  • DOI: 10.1038/nature12582

Epitaxial growth and magnetic properties of the first five members of the layered Srn+1RunO3n+1 oxide series
journal, January 2007

  • Tian, W.; Haeni, J. H.; Schlom, D. G.
  • Applied Physics Letters, Vol. 90, Issue 2
  • DOI: 10.1063/1.2430941

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Current status of thermal barrier coatings — An overview
journal, January 1987


New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Die Struktur des Kaliumnickelfluorids, K2NiF
journal, August 1955

  • Balz, D.; Plieth, K.
  • Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 59, Issue 6
  • DOI: 10.1002/bbpc.19550590613

Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique
journal, March 1999


Minimum Thermal Conductivity of Superlattices
journal, January 2000


Crossover in thermal transport properties of natural, perovskite-structured superlattices
journal, October 2009

  • Chernatynskiy, Aleksandr; Grimes, Robin W.; Zurbuchen, Mark A.
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3253421

Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Phase stability and interfacial structures in the SrO–SrTiO 3 system
journal, March 1997

  • Mccoy, Michael A.; Grimes, Robin W.; Lee, William E.
  • Philosophical Magazine A, Vol. 75, Issue 3
  • DOI: 10.1080/01418619708207205

Broadband dielectric spectroscopy of Ruddlesden–Popper Srn+1TinO3n+1 (n=1,2,3) thin films
journal, January 2009

  • Orloff, N. D.; Tian, W.; Fennie, C. J.
  • Applied Physics Letters, Vol. 94, Issue 4
  • DOI: 10.1063/1.3046792

Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3
journal, January 2007

  • Ohta, Hiromichi; Kim, SungWng; Mune, Yoriko
  • Nature Materials, Vol. 6, Issue 2
  • DOI: 10.1038/nmat1821

Hybrid reflections from multiple x-ray scattering in epitaxial oxide films
journal, September 2017

  • Smith, Eva H.; King, Phil D. C.; Soukiassian, Arsen
  • Applied Physics Letters, Vol. 111, Issue 13
  • DOI: 10.1063/1.4993477

Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
journal, January 2000


Low thermal conductivity of CsBiNb2O7 epitaxial layers
journal, March 2010

  • Cahill, David G.; Melville, Alexander; Schlom, Darrell G.
  • Applied Physics Letters, Vol. 96, Issue 12
  • DOI: 10.1063/1.3368120

Defect structure in homoepitaxial non-stoichiometric strontium titanate thin films
journal, March 2000

  • Suzuki, Toshimasa; Nishi, Yuji; Fujimoto, Masayuki
  • Philosophical Magazine A, Vol. 80, Issue 3
  • DOI: 10.1080/01418610008212072

Thermal properties of AlAs/GaAs superlattices
journal, November 1987

  • Yao, Takafumi
  • Applied Physics Letters, Vol. 51, Issue 22
  • DOI: 10.1063/1.98526

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications
journal, February 1998

  • Chakoumakos, B. C.; Schlom, D. G.; Urbanik, M.
  • Journal of Applied Physics, Vol. 83, Issue 4
  • DOI: 10.1063/1.366925

Nanostructured thermoelectric materials
journal, May 2005

  • Harman, T. C.; Walsh, M. P.; laforge, B. E.
  • Journal of Electronic Materials, Vol. 34, Issue 5
  • DOI: 10.1007/s11664-005-0083-8

Thermal conductivity of GaAs/AlAs superlattices
journal, April 1996


Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series
journal, May 2001

  • Haeni, J. H.; Theis, C. D.; Schlom, D. G.
  • Applied Physics Letters, Vol. 78, Issue 21
  • DOI: 10.1063/1.1371788

Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors
journal, March 2009

  • Koh, Yee Kan; Singer, Suzanne L.; Kim, Woochul
  • Journal of Applied Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.3078808

Phase Equilibria in the 1375oC Isotherm of the System Sr-Ti-O
journal, September 1969


Thermal Barrier Coatings for Gas-Turbine Engine Applications
journal, April 2002


Targeted chemical pressure yields tuneable millimetre-wave dielectric
journal, December 2019

  • Dawley, Natalie M.; Marksz, Eric J.; Hagerstrom, Aaron M.
  • Nature Materials, Vol. 19, Issue 2
  • DOI: 10.1038/s41563-019-0564-4

Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305