DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct current microplasma formation around microstructure arrays

Abstract

We demonstrate the formation and transition behaviors of a microplasma around microstructure arrays at different gas pressures via two-dimensional particle-in-cell/Monte Carlo collision simulations. It is found that the microdischarge occurs outside the cathode microcavities at the lowest pressure and starts penetrating the microcavities with a curved sheath edge as the pressure increases. At higher pressure, coupled periodic microhollow cathode discharges (MHCDs) are formed inside the microcavities. Further increasing the gas pressure results in the disappearance of the MHCDs, and the dominant discharge shifts outside of the microcavity, locating above the protrusion tips. The effect of the space charge shielding on the discharge and the conditions for MHCD formation are discussed. The macroscopic discharge parameter scalings with the gas pressure and the electron kinetics are also examined. The results are helpful for deeply understanding the microplasma formation with nonplanar electrodes, which inform the scaling, design, and optimization of microplasma array devices across a wide range of pressure regimes in practical applications.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [6]
  1. Tsinghua University, Beijing (China). Department of Electrical Engineering
  2. EMD Performance Materials, Tempe, AZ (United States)
  3. Michigan State University, East Lansing, MI (United States). Fraunhofer Center for Coatings and Diamond Technologies
  4. Michigan State University, East Lansing, MI (United States). Department of Electrical and Computer Engineering
  5. Michigan State University, East Lansing, MI (United States). Fraunhofer Center for Coatings and Diamond Technologies; Michigan State University, East Lansing, MI (United States). Department of Electrical and Computer Engineering; Michigan State University, East Lansing, MI (United States). Department of Chemical Engineering and Materials Science
  6. Michigan State University, East Lansing, MI (United States). Department of Electrical and Computer Engineering; Michigan State University, East Lansing, MI (United States). Department of Computational Mathematics, Science and Engineering
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1850774
Alternate Identifier(s):
OSTI ID: 1780509
Grant/Contract Number:  
SC0001939; A9550-18-1-0062; FA9550-18-1-0061; 1917577; 1724941; 51777114
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 17; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Physics

Citation Formats

Fu, Yangyang, Wang, Huihui, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Wang, Xinxin, and Verboncoeur, John P. Direct current microplasma formation around microstructure arrays. United States: N. p., 2021. Web. doi:10.1063/5.0046312.
Fu, Yangyang, Wang, Huihui, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Wang, Xinxin, & Verboncoeur, John P. Direct current microplasma formation around microstructure arrays. United States. https://doi.org/10.1063/5.0046312
Fu, Yangyang, Wang, Huihui, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Wang, Xinxin, and Verboncoeur, John P. Mon . "Direct current microplasma formation around microstructure arrays". United States. https://doi.org/10.1063/5.0046312. https://www.osti.gov/servlets/purl/1850774.
@article{osti_1850774,
title = {Direct current microplasma formation around microstructure arrays},
author = {Fu, Yangyang and Wang, Huihui and Zheng, Bocong and Zhang, Peng and Fan, Qi Hua and Wang, Xinxin and Verboncoeur, John P.},
abstractNote = {We demonstrate the formation and transition behaviors of a microplasma around microstructure arrays at different gas pressures via two-dimensional particle-in-cell/Monte Carlo collision simulations. It is found that the microdischarge occurs outside the cathode microcavities at the lowest pressure and starts penetrating the microcavities with a curved sheath edge as the pressure increases. At higher pressure, coupled periodic microhollow cathode discharges (MHCDs) are formed inside the microcavities. Further increasing the gas pressure results in the disappearance of the MHCDs, and the dominant discharge shifts outside of the microcavity, locating above the protrusion tips. The effect of the space charge shielding on the discharge and the conditions for MHCD formation are discussed. The macroscopic discharge parameter scalings with the gas pressure and the electron kinetics are also examined. The results are helpful for deeply understanding the microplasma formation with nonplanar electrodes, which inform the scaling, design, and optimization of microplasma array devices across a wide range of pressure regimes in practical applications.},
doi = {10.1063/5.0046312},
journal = {Applied Physics Letters},
number = 17,
volume = 118,
place = {United States},
year = {Mon Apr 26 00:00:00 EDT 2021},
month = {Mon Apr 26 00:00:00 EDT 2021}
}

Works referenced in this record:

Plasma Science and Technology in the Limit of the Small: Microcavity Plasmas and Emerging Applications
journal, April 2013

  • Eden, J. G.; Park, S. -J.; Cho, J. H.
  • IEEE Transactions on Plasma Science, Vol. 41, Issue 4
  • DOI: 10.1109/TPS.2013.2253132

Microplasmas ignited and sustained by microwaves
journal, December 2014

  • Hopwood, Jeffrey; Hoskinson, Alan R.; Gregório, José
  • Plasma Sources Science and Technology, Vol. 23, Issue 6
  • DOI: 10.1088/0963-0252/23/6/064002

40000pixel arrays of ac-excited silicon microcavity plasma devices
journal, March 2005

  • Park, S. -J.; Chen, K. -F.; Ostrom, N. P.
  • Applied Physics Letters, Vol. 86, Issue 11
  • DOI: 10.1063/1.1880441

On the Similarities of Low-Temperature Plasma Discharges
journal, May 2019

  • Fu, Yangyang; Verboncoeur, John P.
  • IEEE Transactions on Plasma Science, Vol. 47, Issue 5
  • DOI: 10.1109/TPS.2018.2886444

Microplasmas and applications
journal, January 2006

  • Becker, K. H.; Schoenbach, K. H.; Eden, J. G.
  • Journal of Physics D: Applied Physics, Vol. 39, Issue 3
  • DOI: 10.1088/0022-3727/39/3/R01

Gas Breakdown in Microgaps With a Surface Protrusion On the Electrode
journal, May 2019

  • Fu, Yangyang; Krek, Janez; Zhang, Peng
  • IEEE Transactions on Plasma Science, Vol. 47, Issue 5
  • DOI: 10.1109/TPS.2018.2878011

High-energy ballistic electrons in low-pressure radio-frequency plasmas
journal, September 2020

  • Fu, Yangyang; Zheng, Bocong; Wen, De-Qi
  • Plasma Sources Science and Technology, Vol. 29, Issue 9
  • DOI: 10.1088/1361-6595/abb21b

Plasma medicine: an introductory review
journal, November 2009


Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches
journal, February 2012

  • Venkattraman, A.; Garg, A.; Peroulis, D.
  • Applied Physics Letters, Vol. 100, Issue 8
  • DOI: 10.1063/1.3688176

Transition characteristics and electron kinetics in microhollow cathode discharges
journal, January 2021

  • Fu, Yangyang; Zheng, Bocong; Zhang, Peng
  • Journal of Applied Physics, Vol. 129, Issue 2
  • DOI: 10.1063/5.0033282

Spatiotemporal electron dynamics in radio-frequency glow discharges: fluid versus dynamic Monte Carlo simulations
journal, April 1995


Triboelectric microplasma powered by mechanical stimuli
journal, September 2018


Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions
journal, January 2019

  • Fu, Yangyang; Zhang, Peng; Krek, Janez
  • Applied Physics Letters, Vol. 114, Issue 1
  • DOI: 10.1063/1.5077015

Ionization wave propagation on a micro cavity plasma array
journal, October 2011

  • Wollny, Alexander; Hemke, Torben; Gebhardt, Markus
  • Applied Physics Letters, Vol. 99, Issue 14
  • DOI: 10.1063/1.3647978

On the reliability of low-pressure dc glow discharge modelling
journal, February 2006


Glow discharges with electrostatic confinement of fast electrons
journal, May 2015


Electron and ion kinetics in a micro hollow cathode discharge
journal, September 2006


Microhollow cathode discharges
journal, January 1996

  • Schoenbach, K. H.; Verhappen, R.; Tessnow, T.
  • Applied Physics Letters, Vol. 68, Issue 1
  • DOI: 10.1063/1.116739

Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges
journal, April 2016

  • Levko, Dmitry; Raja, Laxminarayan L.
  • Journal of Applied Physics, Vol. 119, Issue 16
  • DOI: 10.1063/1.4947522

Modeling of microdischarge devices: Pyramidal structures
journal, February 2004

  • Kushner, Mark J.
  • Journal of Applied Physics, Vol. 95, Issue 3
  • DOI: 10.1063/1.1636251

Principles of Plasma Discharges and Materials Processing
book, January 2005


Similarity law and frequency scaling in low-pressure capacitive radio frequency plasmas
journal, November 2020

  • Fu, Yangyang; Zheng, Bocong; Wen, De-Qi
  • Applied Physics Letters, Vol. 117, Issue 20
  • DOI: 10.1063/5.0029518

20 years of microplasma research: a status report
journal, February 2016


Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions
journal, March 2006


Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency
journal, September 2020

  • Homola, Tomáš; Prukner, Václav; Hoffer, Petr
  • Plasma Sources Science and Technology, Vol. 29, Issue 9
  • DOI: 10.1088/1361-6595/aba987

Microhollow cathode discharge excimer lamps
journal, May 2000

  • Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874039

Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results?
journal, May 2011


Electron Kinetics in Radio-Frequency Atmospheric-Pressure Microplasmas
journal, August 2007


Properties of arrays of microplasmas: application to control of electromagnetic waves
journal, October 2017

  • Qu, Chenhui; Tian, Peng; Semnani, Abbas
  • Plasma Sources Science and Technology, Vol. 26, Issue 10
  • DOI: 10.1088/1361-6595/aa8d53

Scaling and the design of miniaturized chemical-analysis systems
journal, July 2006

  • Janasek, Dirk; Franzke, Joachim; Manz, Andreas
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05059

Nanosecond, repetitively pulsed microdischarge vacuum ultraviolet source
journal, February 2014

  • Stephens, J.; Fierro, A.; Walls, B.
  • Applied Physics Letters, Vol. 104, Issue 7
  • DOI: 10.1063/1.4866040

Criteria of radio-frequency ring-shaped hollow cathode discharge using H 2 and Ar gases for plasma processing
journal, January 2013

  • Ohtsu, Yasunori; Kawasaki, Yujiro
  • Journal of Applied Physics, Vol. 113, Issue 3
  • DOI: 10.1063/1.4776220

Frequency response of atmospheric pressure gas breakdown in micro/nanogaps
journal, August 2013

  • Semnani, Abbas; Venkattraman, Ayyaswamy; Alexeenko, Alina A.
  • Applied Physics Letters, Vol. 103, Issue 6
  • DOI: 10.1063/1.4817978

Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve
journal, November 2014


Modeling a high power fusion plasma reactor-type ion source: Applicability of particle methods
journal, April 2012

  • Fubiani, G.; Hagelaar, G. J. M.; Boeuf, J. P.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3696037

A microplasma process for hexagonal boron nitride thin film synthesis
journal, April 2020

  • Kabbara, H.; Kasri, S.; Brinza, O.
  • Applied Physics Letters, Vol. 116, Issue 17
  • DOI: 10.1063/1.5143948

Paschen's curve in microgaps with an electrode surface protrusion
journal, July 2018

  • Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 113, Issue 5
  • DOI: 10.1063/1.5045182

Enhancement of Ohmic heating by Hall current in magnetized capacitively coupled discharges
journal, September 2019

  • Zheng, Bocong; Wang, Keliang; Grotjohn, Timothy
  • Plasma Sources Science and Technology, Vol. 28, Issue 9
  • DOI: 10.1088/1361-6595/ab419d

High-pressure hollow cathode discharges
journal, November 1997

  • Schoenbach, Karl H.; El-Habachi, Ahmed; Shi, Wenhui
  • Plasma Sources Science and Technology, Vol. 6, Issue 4
  • DOI: 10.1088/0963-0252/6/4/003

Effect of Cathode Length on Electrical Characteristics of a Microhollow Cathode Discharge in Helium
journal, May 2012

  • Yamasaki, Tsutomu; Namba, Shinichi; Takiyama, Ken
  • Japanese Journal of Applied Physics, Vol. 51
  • DOI: 10.1143/JJAP.51.066001

Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications
journal, November 2005


Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge
journal, December 2009


Gas discharge plasmas and their applications
journal, April 2002

  • Bogaerts, Annemie; Neyts, Erik; Gijbels, Renaat
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 57, Issue 4
  • DOI: 10.1016/S0584-8547(01)00406-2

Linear arrays of stable atmospheric pressure microplasmas
journal, October 2009

  • Zhang, Zhi-Bo; Hopwood, Jeffrey
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3251793

Influence of metastable atoms in low pressure magnetized radio-frequency argon discharges
journal, July 2020

  • Zheng, Bocong; Fu, Yangyang; Wen, De-qi
  • Journal of Physics D: Applied Physics, Vol. 53, Issue 43
  • DOI: 10.1088/1361-6463/ab9f68

Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O 2 into humid air
journal, January 2014