DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces

Abstract

The kinetics for interfacial electron transfer (ET) from a transparent conductive oxide (tin-doped indium oxide, ITO, Sn:In2O3) to molecular acceptors 4-[N,N-di(p-tolyl)amino]benzylphosphonic acid, TPA, and [RuII(bpy)2(4,4' -(PO3H2)2-bpy)]2+, RuP, positioned at variable distances within and beyond the electric double layer (EDL), were quantified in benzonitrile and methanol by nanosecond absorption spectroscopy as a function of the thermodynamic driving force, -ΔG ° . Relevant ET parameters such as the rate constant, ket, reorganization energy, λ, and electronic coupling, Hab, were extracted from the kinetic data. Overall, ket increased as the distance between the molecular acceptor and the conductor decreased. For redox active molecules within the Helmholtz planes of the EDL, ket was nearly independent of -ΔG° , consistent with a negligibly small λ value. Rips–Jortner analysis revealed a non-adiabatic electron transfer mechanism consistent with Hab < 1 cm-1 . The data indicate that the barrier for electron transfer is greatly diminished at the conductor–electrolyte interface.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
Publication Date:
Research Org.:
University of North Carolina, Chapel Hill, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1850681
Alternate Identifier(s):
OSTI ID: 1669164
Grant/Contract Number:  
SC0001011; DGE-1650116
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 13; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Chemistry; physics; reaction rate constants; electronic coupling; thin films; dielectric properties; chemical compounds; transfer reaction; s electrolytes; absorption spectroscopy; electrochemistry; electron transfer theory

Citation Formats

Aramburu-Trošelj, Bruno M., Bangle, Rachel E., and Meyer, Gerald J. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. United States: N. p., 2020. Web. doi:10.1063/5.0023766.
Aramburu-Trošelj, Bruno M., Bangle, Rachel E., & Meyer, Gerald J. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. United States. https://doi.org/10.1063/5.0023766
Aramburu-Trošelj, Bruno M., Bangle, Rachel E., and Meyer, Gerald J. Thu . "Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces". United States. https://doi.org/10.1063/5.0023766. https://www.osti.gov/servlets/purl/1850681.
@article{osti_1850681,
title = {Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces},
author = {Aramburu-Trošelj, Bruno M. and Bangle, Rachel E. and Meyer, Gerald J.},
abstractNote = {The kinetics for interfacial electron transfer (ET) from a transparent conductive oxide (tin-doped indium oxide, ITO, Sn:In2O3) to molecular acceptors 4-[N,N-di(p-tolyl)amino]benzylphosphonic acid, TPA, and [RuII(bpy)2(4,4' -(PO3H2)2-bpy)]2+, RuP, positioned at variable distances within and beyond the electric double layer (EDL), were quantified in benzonitrile and methanol by nanosecond absorption spectroscopy as a function of the thermodynamic driving force, -ΔG ° . Relevant ET parameters such as the rate constant, ket, reorganization energy, λ, and electronic coupling, Hab, were extracted from the kinetic data. Overall, ket increased as the distance between the molecular acceptor and the conductor decreased. For redox active molecules within the Helmholtz planes of the EDL, ket was nearly independent of -ΔG° , consistent with a negligibly small λ value. Rips–Jortner analysis revealed a non-adiabatic electron transfer mechanism consistent with Hab < 1 cm-1 . The data indicate that the barrier for electron transfer is greatly diminished at the conductor–electrolyte interface.},
doi = {10.1063/5.0023766},
journal = {Journal of Chemical Physics},
number = 13,
volume = 153,
place = {United States},
year = {Thu Oct 01 00:00:00 EDT 2020},
month = {Thu Oct 01 00:00:00 EDT 2020}
}

Works referenced in this record:

Dynamical solvent effects on activated electron-transfer reactions: principles, pitfalls, and progress
journal, May 1992


Homogeneous and heterogeneous optical and thermal electron transfer
journal, May 1968


Surface-Bound Molecular Rulers for Probing the Electrical Double Layer
journal, April 2012

  • Eggers, Paul K.; Darwish, Nadim; Paddon-Row, Michael N.
  • Journal of the American Chemical Society, Vol. 134, Issue 17
  • DOI: 10.1021/ja301509h

A unified model of the adiabatic reactions of electron transfer at metal electrodes
journal, February 1988

  • Kuznetsov, Alexander M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 241, Issue 1-2
  • DOI: 10.1016/0022-0728(88)85115-5

Adiabatic Rate Processes at Electrodes. I. Energy‐Charge Relationships
journal, May 1958

  • Hush, N. S.
  • The Journal of Chemical Physics, Vol. 28, Issue 5
  • DOI: 10.1063/1.1744305

On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
journal, May 1956

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 24, Issue 5
  • DOI: 10.1063/1.1742723

The interface between a metal and an electrolyte
journal, August 1961


Anomalously low dielectric constant of confined water
journal, June 2018


The Kinetics of Electron Transfer Through Ferrocene-Terminated Alkanethiol Monolayers on Gold
journal, August 1995

  • Smalley, John F.; Feldberg, Stephen W.; Chidsey, Christopher E. D.
  • The Journal of Physical Chemistry, Vol. 99, Issue 35
  • DOI: 10.1021/j100035a016

Photoinduced electron transfer in covalently linked ruthenium tris(bipyridyl)-viologen molecules: observation of back electron transfer in the Marcus inverted region
journal, October 1992

  • Yonemoto, Edward H.; Riley, Richard L.; Kim, Yeong Il
  • Journal of the American Chemical Society, Vol. 114, Issue 21
  • DOI: 10.1021/ja00047a017

Electron Transfer at Electrodes through Conjugated “Molecular Wire” Bridges
journal, February 1999

  • Creager, Stephen; Yu, C. J.; Bamdad, Cindy
  • Journal of the American Chemical Society, Vol. 121, Issue 5
  • DOI: 10.1021/ja983204c

Electron Transfer Kinetics of Tris(1,10-phenanthroline)ruthenium(II) Electrooxidation in Aprotic Solvents
journal, April 2000

  • Winkler, Krzysztof; McKnight, Novelette; Fawcett, W. Ronald
  • The Journal of Physical Chemistry B, Vol. 104, Issue 15
  • DOI: 10.1021/jp993547c

Redox Kinetics in Monolayers on Electrodes:  Electron Transfer Is Sluggish for Ferrocene Groups Buried within the Monolayer Interior
journal, September 2001

  • Sumner, James J.; Creager, Stephen E.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 37
  • DOI: 10.1021/jp011229j

Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film
journal, January 2013

  • Vaissier, Valérie; Barnes, Piers; Kirkpatrick, James
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp44562c

Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge That Follows Different Pathways
journal, May 2018

  • Piechota, Eric J.; Troian-Gautier, Ludovic; Sampaio, Renato N.
  • Journal of the American Chemical Society, Vol. 140, Issue 23
  • DOI: 10.1021/jacs.8b02715

Crystal and molecular structures of [Ru(bpy)3](PF6)3 and [Ru(bpy)3](PF6)2 at 105 K
journal, June 1992

  • Biner, M.; Buergi, H. B.; Ludi, A.
  • Journal of the American Chemical Society, Vol. 114, Issue 13
  • DOI: 10.1021/ja00039a034

Electron transfer in retrospect and prospect
journal, January 1999


A molecular model for the dielectric properties of the inner layer at the mercury/aqueous solution interface
journal, August 1980

  • Fawcett, W. R.; Levine, S.; deNobriga, R. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 111, Issue 2-3
  • DOI: 10.1016/s0022-0728(80)80037-4

Evidence that Δ S Controls Interfacial Electron Transfer Dynamics from Anatase TiO 2 to Molecular Acceptors
journal, February 2018

  • Troian-Gautier, Ludovic; DiMarco, Brian N.; Sampaio, Renato N.
  • Journal of the American Chemical Society, Vol. 140, Issue 8
  • DOI: 10.1021/jacs.7b13243

Electron transfer in nonpolar media
journal, January 2020

  • Matyushov, Dmitry V.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/c9cp06166e

Solvent Dynamics Effects on Heterogeneous Electron Transfer Rate Constants of Cobalt Tris(bipyridine)
journal, January 1996

  • Pyati, Radha; Murray, Royce W.
  • Journal of the American Chemical Society, Vol. 118, Issue 7
  • DOI: 10.1021/ja952912k

Adiabatic outer sphere electron transfer through the metal-electrolyte interface
journal, October 1991

  • Gorodyskii, A. V.; Karasevskii, A. I.; Matyushov, D. V.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 315, Issue 1-2
  • DOI: 10.1016/0022-0728(91)80058-x

Distance dependence of heterogeneous electron transfer through the nonadiabatic and adiabatic regimes
journal, May 2006


Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer
journal, December 2014

  • Farnum, Byron H.; Morseth, Zachary A.; Brennaman, M. Kyle
  • The Journal of Physical Chemistry B, Vol. 119, Issue 24
  • DOI: 10.1021/jp512624u

Dynamical Effects in Protein Electrochemistry
journal, July 2019


Intramolecular vibrational excitations accompanying solvent‐controlled electron transfer reactions
journal, January 1988

  • Jortner, Joshua; Bixon, Mordechai
  • The Journal of Chemical Physics, Vol. 88, Issue 1
  • DOI: 10.1063/1.454632

Outer-sphere electron transfer reactions at an electrode
journal, February 1987


Factors that Control the Direction of Excited-State Electron Transfer at Dye-Sensitized Oxide Interfaces
journal, June 2019

  • Bangle, Rachel E.; Meyer, Gerald J.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 42
  • DOI: 10.1021/acs.jpcc.9b06755

Electrochemical Techniques for the Study of Photosensitization*
journal, October 1972


Intramolecular Long-Distance Electron Transfer in Organic Molecules
journal, April 1988


Adiabaticity of electron transfer at an electrode
journal, February 1987

  • Morgan, John D.; Wolynes, Peter G.
  • The Journal of Physical Chemistry, Vol. 91, Issue 4
  • DOI: 10.1021/j100288a023

Heterogeneous Electron-Transfer Kinetics for Ruthenium and Ferrocene Redox Moieties through Alkanethiol Monolayers on Gold
journal, February 2003

  • Smalley, John F.; Finklea, Harry O.; Chidsey, Christopher E. D.
  • Journal of the American Chemical Society, Vol. 125, Issue 7
  • DOI: 10.1021/ja028458j

The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy
journal, October 2014


On the Theory of Electron‐Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions
journal, July 1965

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 43, Issue 2
  • DOI: 10.1063/1.1696792

The Class II/III Transition in Triarylamine Redox Systems
journal, September 1999

  • Lambert, Christoph; Nöll, Gilbert
  • Journal of the American Chemical Society, Vol. 121, Issue 37
  • DOI: 10.1021/ja991264s

Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts
journal, June 2019

  • Schneider, Jenny; Bangle, Rachel E.; Swords, Wesley B.
  • Journal of the American Chemical Society, Vol. 141, Issue 25
  • DOI: 10.1021/jacs.9b01296

Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: A review
journal, December 2012


The Kinetics of Heterogeneous Electron Transfer Reaction in Polar Solvents
journal, November 1994

  • Fawcett, William Ronald; Opallo, Marcin
  • Angewandte Chemie International Edition in English, Vol. 33, Issue 21
  • DOI: 10.1002/anie.199421311

Dynamic solvent effects on outer‐sphere electron transfer
journal, August 1987

  • Rips, Ilya; Jortner, Joshua
  • The Journal of Chemical Physics, Vol. 87, Issue 4
  • DOI: 10.1063/1.453184

A theory of adiabatic electron-transfer reactions
journal, June 1986

  • Schmickler, Wolfgang
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 204, Issue 1-2
  • DOI: 10.1016/0022-0728(86)80505-8

The Electrical Double Layer and the Theory of Electrocapillarity.
journal, December 1947


Solvent Variables Controlling Electric Double Layer Capacitance at the Metal–Solution Interface
journal, May 2014

  • Hou, Yongdan; Aoki, Koichi Jeremiah; Chen, Jingyuan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 19
  • DOI: 10.1021/jp5018289

Reorganization Energy for Electron Transfer at Film-Modified Electrode Surfaces: A Dielectric Continuum Model
journal, July 1994

  • Liu, Yi-Ping; Newton, Marshall D.
  • The Journal of Physical Chemistry, Vol. 98, Issue 29
  • DOI: 10.1021/j100080a011

Solvent reorganization energy of electron-transfer reactions in polar solvents
journal, April 2004

  • Matyushov, Dmitry V.
  • The Journal of Chemical Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.1676122

Kinetic Evidence That the Solvent Barrier for Electron Transfer Is Absent in the Electric Double Layer
journal, July 2020

  • Bangle, Rachel E.; Schneider, Jenny; Conroy, Daniel T.
  • Journal of the American Chemical Society, Vol. 142, Issue 35
  • DOI: 10.1021/jacs.0c05226

Dynamical effects in electron transfer reactions
journal, May 1986

  • Sumi, H.; Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 84, Issue 9
  • DOI: 10.1063/1.449978

Voltage-dependent ordering of water molecules at an electrode–electrolyte interface
journal, March 1994

  • Toney, Michael F.; Howard, Jason N.; Richer, Jocelyn
  • Nature, Vol. 368, Issue 6470
  • DOI: 10.1038/368444a0

Electron Transfer Reorganization Energies in the Electrode–Electrolyte Double Layer
journal, December 2019

  • Bangle, Rachel E.; Schneider, Jenny; Piechota, Eric J.
  • Journal of the American Chemical Society, Vol. 142, Issue 2
  • DOI: 10.1021/jacs.9b11815

Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies
journal, May 2016

  • Ghosh, Soumya; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00233

Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers
journal, April 1992

  • Finklea, Harry O.; Hanshew, Dwight D.
  • Journal of the American Chemical Society, Vol. 114, Issue 9
  • DOI: 10.1021/ja00035a001

Electronic friction and electron transfer rates at metallic electrodes
journal, November 1993

  • Smith, Barton B.; Hynes, James T.
  • The Journal of Chemical Physics, Vol. 99, Issue 9
  • DOI: 10.1063/1.465843

A Charge-Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface
journal, October 2018

  • Sampaio, Renato N.; Troian-Gautier, Ludovic; Meyer, Gerald J.
  • Angewandte Chemie International Edition, Vol. 57, Issue 47
  • DOI: 10.1002/anie.201807627

Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Based Photovoltaic Devices
journal, December 1994

  • Argazzi, Robert; Bignozzi, Carlo A.; Heimer, Todd A.
  • Inorganic Chemistry, Vol. 33, Issue 25
  • DOI: 10.1021/ic00103a022

Theory of Electron‐Transfer Reaction Rates of Solvated Electrons
journal, November 1965

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 43, Issue 10
  • DOI: 10.1063/1.1696504

Interfacial Electrochemistry
book, January 2010