DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities

Abstract

As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near $$Utqia\dot{g}ik$$ to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [1]
  1. Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska 99775 USA
  2. Terrestrial Ecosystem Science &, Technology Group Environmental Sciences Department Brookhaven National Laboratory Upton New York 11973 USA
  3. Department of Natural Resources and Environmental Sciences University of Illinois at Urbana‐Champaign Urbana Illinois 61801 USA
  4. Environmental Sciences Division and Climate Change Science Institute Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1835373
Alternate Identifier(s):
OSTI ID: 1817192; OSTI ID: 1831697; OSTI ID: 1835377
Report Number(s):
BNL-221997-2021-JAAM
Journal ID: ISSN 1051-0761; e2499
Grant/Contract Number:  
DE‐SC0016219; DE‐SC0012704; SC0012704; AC05-00OR22725; SC0016219
Resource Type:
Published Article
Journal Name:
Ecological Applications
Additional Journal Information:
Journal Name: Ecological Applications Journal Volume: 32 Journal Issue: 2; Journal ID: ISSN 1051-0761
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; arctic carbon budget; arctic tundra; landscape heterogeneity; model uncertainty; parameter sensitivity; terrestrial biosphere model

Citation Formats

Euskirchen, Eugénie S., Serbin, Shawn P., Carman, Tobey B., Fraterrigo, Jennifer M., Genet, Hélène, Iversen, Colleen M., Salmon, Verity, and McGuire, A. David. Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities. United States: N. p., 2021. Web. doi:10.1002/eap.2499.
Euskirchen, Eugénie S., Serbin, Shawn P., Carman, Tobey B., Fraterrigo, Jennifer M., Genet, Hélène, Iversen, Colleen M., Salmon, Verity, & McGuire, A. David. Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities. United States. https://doi.org/10.1002/eap.2499
Euskirchen, Eugénie S., Serbin, Shawn P., Carman, Tobey B., Fraterrigo, Jennifer M., Genet, Hélène, Iversen, Colleen M., Salmon, Verity, and McGuire, A. David. Mon . "Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities". United States. https://doi.org/10.1002/eap.2499.
@article{osti_1835373,
title = {Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities},
author = {Euskirchen, Eugénie S. and Serbin, Shawn P. and Carman, Tobey B. and Fraterrigo, Jennifer M. and Genet, Hélène and Iversen, Colleen M. and Salmon, Verity and McGuire, A. David},
abstractNote = {As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near $Utqia\dot{g}ik$ to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.},
doi = {10.1002/eap.2499},
journal = {Ecological Applications},
number = 2,
volume = 32,
place = {United States},
year = {Mon Dec 13 00:00:00 EST 2021},
month = {Mon Dec 13 00:00:00 EST 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/eap.2499

Save / Share:

Works referenced in this record:

Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
journal, September 2018

  • Treat, Claire C.; Marushchak, Maija E.; Voigt, Carolina
  • Global Change Biology, Vol. 24, Issue 11
  • DOI: 10.1111/gcb.14421

Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska
journal, May 2007


Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra
journal, August 2013

  • Bhatt, Uma; Walker, Donald; Raynolds, Martha
  • Remote Sensing, Vol. 5, Issue 9
  • DOI: 10.3390/rs5094229

Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems
journal, October 2013

  • Sloan, Victoria L.; Fletcher, Benjamin J.; Press, Malcolm C.
  • Global Change Biology, Vol. 19, Issue 12
  • DOI: 10.1111/gcb.12322

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets
journal, September 2016

  • Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
  • Remote Sensing, Vol. 8, Issue 9
  • DOI: 10.3390/rs8090733

The Effects of Different Climate Input Datasets on Simulated Carbon Dynamics in the Western Arctic
journal, August 2007

  • Clein, Joy; McGuire, A. David; Euskirchen, Eugenie S.
  • Earth Interactions, Vol. 11, Issue 12
  • DOI: 10.1175/EI229.1

Patchy field sampling biases understanding of climate change impacts across the Arctic
journal, July 2018

  • Metcalfe, Daniel B.; Hermans, Thirze D. G.; Ahlstrand, Jenny
  • Nature Ecology & Evolution, Vol. 2, Issue 9
  • DOI: 10.1038/s41559-018-0612-5

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes: PEcAn/ED model-data uncertainty analysis
journal, March 2014

  • Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002392

Reduced arctic tundra productivity linked with landform and climate change interactions
journal, February 2018


The unseen iceberg: plant roots in arctic tundra
journal, September 2014

  • Iversen, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.
  • New Phytologist, Vol. 205, Issue 1
  • DOI: 10.1111/nph.13003

Potential Net Primary Productivity in South America: Application of a Global Model
journal, November 1991

  • Raich, J. W.; Rastetter, E. B.; Melillo, J. M.
  • Ecological Applications, Vol. 1, Issue 4
  • DOI: 10.2307/1941899

Tundra ecosystems observed to be CO 2 sources due to differential amplification of the carbon cycle
journal, August 2013

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Ecology Letters, Vol. 16, Issue 10
  • DOI: 10.1111/ele.12164

Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient
journal, December 2020


An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
journal, October 2011

  • Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin
  • Environmental Research Letters, Vol. 6, Issue 4
  • DOI: 10.1088/1748-9326/6/4/045509

Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics
journal, December 2001

  • Zhuang, Q.; Romanovsky, V. E.; McGuire, A. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D24
  • DOI: 10.1029/2001JD900151

Climate sensitivity of shrub growth across the tundra biome
journal, July 2015

  • Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S. A.
  • Nature Climate Change, Vol. 5, Issue 9
  • DOI: 10.1038/nclimate2697

Key indicators of Arctic climate change: 1971–2017
journal, April 2019

  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle
  • Environmental Research Letters, Vol. 14, Issue 4
  • DOI: 10.1088/1748-9326/aafc1b

Long-term warming restructures Arctic tundra without changing net soil carbon storage
journal, May 2013

  • Sistla, Seeta A.; Moore, John C.; Simpson, Rodney T.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12129

The urgency of Arctic change
journal, September 2019


The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska
journal, December 2017

  • Genet, Hélène; He, Yujie; Lyu, Zhou
  • Ecological Applications, Vol. 28, Issue 1
  • DOI: 10.1002/eap.1641

Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model
journal, January 2014

  • Euskirchen, Eugénie S.; Carman, Tobey B.; McGuire, A. David
  • Global Change Biology, Vol. 20, Issue 3
  • DOI: 10.1111/gcb.12392

Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images
journal, September 2016

  • Juutinen, Sari; Virtanen, Tarmo; Kondratyev, Vladimir
  • Environmental Research Letters, Vol. 12, Issue 9
  • DOI: 10.1088/1748-9326/aa7f85

Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data
journal, July 2016


The influence of canopy radiation parameter uncertainty on model projections of terrestrial carbon and energy cycling
journal, July 2019


Managing uncertainty in soil carbon feedbacks to climate change
journal, July 2016

  • Bradford, Mark A.; Wieder, William R.; Bonan, Gordon B.
  • Nature Climate Change, Vol. 6, Issue 8
  • DOI: 10.1038/nclimate3071

Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks
journal, June 2009

  • Euskirchen, E. S.; McGuire, A. D.; Chapin, F. S.
  • Ecological Applications, Vol. 19, Issue 4
  • DOI: 10.1890/08-0806.1

Missing pieces to modeling the Arctic-Boreal puzzle
journal, February 2018

  • Fisher, Joshua B.; Hayes, Daniel J.; Schwalm, Christopher R.
  • Environmental Research Letters, Vol. 13, Issue 2
  • DOI: 10.1088/1748-9326/aa9d9a

Production: Biomass Relationships and Element Cycling in Contrasting Arctic Vegetation Types
journal, February 1991

  • Shaver, Gaius R.; Chapin, F. Stuart
  • Ecological Monographs, Vol. 61, Issue 1
  • DOI: 10.2307/1942997

Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska
journal, January 2012

  • Euskirchen, E. S.; Bret-Harte, M. S.; Scott, G. J.
  • Ecosphere, Vol. 3, Issue 1
  • DOI: 10.1890/ES11-00202.1

Reducing uncertainty in projections of terrestrial carbon uptake
journal, April 2017

  • Lovenduski, Nicole S.; Bonan, Gordon B.
  • Environmental Research Letters, Vol. 12, Issue 4
  • DOI: 10.1088/1748-9326/aa66b8

Observing terrestrial ecosystems and the carbon cycle from space
journal, February 2015

  • Schimel, David; Pavlick, Ryan; Fisher, Joshua B.
  • Global Change Biology, Vol. 21, Issue 5
  • DOI: 10.1111/gcb.12822

Microbial models with data-driven parameters predict stronger soil carbon responses to climate change
journal, March 2015

  • Hararuk, Oleksandra; Smith, Matthew J.; Luo, Yiqi
  • Global Change Biology, Vol. 21, Issue 6
  • DOI: 10.1111/gcb.12827

A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests
journal, January 2010

  • Yi, Shuhua; McGuire, A. David; Kasischke, Eric
  • Journal of Geophysical Research, Vol. 115, Issue G4
  • DOI: 10.1029/2010JG001302

Increasing shrub abundance in the Arctic
journal, May 2001

  • Sturm, Matthew; Racine, Charles; Tape, Kenneth
  • Nature, Vol. 411, Issue 6837
  • DOI: 10.1038/35079180

Greening of the land surface in the world’s cold regions consistent with recent warming
journal, August 2018


Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks
journal, January 2019

  • Langford, Zachary L.; Kumar, Jitendra; Hoffman, Forrest M.
  • Remote Sensing, Vol. 11, Issue 1
  • DOI: 10.3390/rs11010069

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Controls on Fine-Scale Spatial and Temporal Variability of Plant-Available Inorganic Nitrogen in a Polygonal Tundra Landscape
journal, August 2018


The Circumpolar Arctic vegetation map
journal, February 2005


Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America
journal, June 1992

  • McGuire, A. D.; Melillo, J. M.; Joyce, L. A.
  • Global Biogeochemical Cycles, Vol. 6, Issue 2
  • DOI: 10.1029/92GB00219

Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory
journal, July 2012

  • Gough, Laura; Moore, John C.; Shaver, Gauis R.
  • Ecology, Vol. 93, Issue 7
  • DOI: 10.1890/11-1631.1

On improving the communication between models and data: Communication between models and data
journal, January 2013

  • Dietze, Michael C.; Lebauer, David S.; Kooper, Rob
  • Plant, Cell & Environment, Vol. 36, Issue 9
  • DOI: 10.1111/pce.12043

Predicting yields of short-rotation hybrid poplar ( Populus spp.) for the United States through model–data synthesis
journal, June 2013

  • Wang, Dan; LeBauer, David; Dietze, Michael
  • Ecological Applications, Vol. 23, Issue 4
  • DOI: 10.1890/12-0854.1

Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming
journal, November 2007


Structural complexity and land‐surface energy exchange along a gradient from arctic tundra to boreal forest
journal, February 2004


Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends: Coverage Bias in the HadCRUT4 Temperature Series
journal, February 2014

  • Cowtan, Kevin; Way, Robert G.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 140, Issue 683
  • DOI: 10.1002/qj.2297

Direct Estimation of Aboveground Forest Productivity Through Hyperspectral Remote Sensing of Canopy Nitrogen
journal, October 2002


Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada
journal, October 2016


An Investigation into the Impact of using Various Techniques to Estimate Arctic Surface Air Temperature Anomalies*
journal, February 2015

  • Dodd, Emma M. A.; Merchant, Christopher J.; Rayner, Nick A.
  • Journal of Climate, Vol. 28, Issue 5
  • DOI: 10.1175/JCLI-D-14-00250.1

Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges: MODELING THE ARCTIC FRESHWATER SYSTEM
journal, March 2016

  • Lique, Camille; Holland, Marika M.; Dibike, Yonas B.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 3
  • DOI: 10.1002/2015JG003120

From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance
journal, September 2019

  • Serbin, Shawn P.; Wu, Jin; Ely, Kim S.
  • New Phytologist, Vol. 224, Issue 4
  • DOI: 10.1111/nph.16123

Facilitating feedbacks between field measurements and ecosystem models
journal, May 2013

  • LeBauer, David S.; Wang, Dan; Richter, Katherine T.
  • Ecological Monographs, Vol. 83, Issue 2
  • DOI: 10.1890/12-0137.1

Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
journal, December 2015

  • Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.
  • Ecological Applications, Vol. 25, Issue 8
  • DOI: 10.1890/14-2098.1

Arctic browning: extreme events and trends reversing arctic greening
journal, April 2016

  • Phoenix, Gareth K.; Bjerke, Jarle W.
  • Global Change Biology, Vol. 22, Issue 9
  • DOI: 10.1111/gcb.13261

What Limits Predictive Certainty of Long‐Term Carbon Uptake?
journal, December 2018

  • Raczka, Brett; Dietze, Michael C.; Serbin, Shawn P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 12
  • DOI: 10.1029/2018JG004504

Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis
journal, January 2011

  • Dietze, Michael C.; Vargas, Rodrigo; Richardson, Andrew D.
  • Journal of Geophysical Research, Vol. 116, Issue G4
  • DOI: 10.1029/2011JG001661

LiDAR canopy radiation model reveals patterns of photosynthetic partitioning in an Arctic shrub
journal, May 2016


Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability
journal, September 2017


Terrestrial biosphere models underestimate photosynthetic capacity and CO 2 assimilation in the Arctic
journal, September 2017

  • Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.
  • New Phytologist, Vol. 216, Issue 4
  • DOI: 10.1111/nph.14740

Plant Traits are Key Determinants in Buffering the Meteorological Sensitivity of Net Carbon Exchanges of Arctic Tundra
journal, September 2018

  • López-Blanco, Efrén; Lund, Magnus; Christensen, Torben R.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 9
  • DOI: 10.1029/2018JG004386

21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Environmental Research Letters, Vol. 13, Issue 5
  • DOI: 10.1088/1748-9326/aabf28

Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local N Cycling
journal, October 2019

  • Salmon, Verity G.; Breen, Amy L.; Kumar, Jitendra
  • Frontiers in Plant Science, Vol. 10
  • DOI: 10.3389/fpls.2019.01099

Carbon cycle uncertainty in the Alaskan Arctic
journal, January 2014