DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1

Abstract

Tubulin-binding TOG domains are found arrayed in a number of proteins that regulate microtubule dynamics. While much is known about the structure and function of TOG domains from the XMAP215 microtubule polymerase family, less in known about the TOG domain array found in animal CLASP family members. The animal CLASP TOG array promotes microtubule pause, potentiates rescue, and limits catastrophe. How structurally distinct the TOG domains of animal CLASP are from one another, from XMAP215 family TOG domains, and whether a specific order of structurally distinct TOG domains in the TOG array is conserved across animal CLASP family members is poorly understood. We present the x-ray crystal structures of Homo sapiens (H.s.) CLASP1 TOG1 and TOG2. The structures of H.s. CLASP1 TOG1 and TOG2 are distinct from each other and from the previously determined structure of Mus musculus (M.m.) CLASP2 TOG3. Comparative analyses of CLASP family TOG domain structures determined to date across species and paralogs supports a conserved CLASP TOG array paradigm in which structurally distinct TOG domains are arrayed in a specific order. H.s. CLASP1 TOG1 bears structural similarity to the free-tubulin binding TOG domains of the XMAP215 family but lacks many of the key tubulin-binding determinants foundmore » in XMAP215 family TOG domains. This aligns with studies that report that animal CLASP family TOG1 domains cannot bind free tubulin or microtubules. In contrast, animal CLASP family TOG2 and TOG3 domains have reported microtubule-binding activity but are structurally distinct from the free-tubulin binding TOG domains of the XMAP215 family. H.s. CLASP1 TOG2 has a convex architecture, predicted to engage a hyper-curved tubulin state that may underlie its ability to limit microtubule catastrophe and promote rescue. M.m. CLASP2 TOG3 has unique structural elements in the C-terminal half of its α-solenoid domain that our modeling studies implicate in binding to laterally-associated tubulin subunits in the microtubule lattice in a mode similar to, yet distinct from those predicted for the XMAP215 family TOG4 domain. The potential ability of the animal CLASP family TOG3 domain to engage lateral tubulin subunits may underlie the microtubule rescue activity ascribed to the domain. These findings highlight the structural diversity of TOG domains within the CLASP family TOG array and provide a molecular foundation for understanding CLASP-dependent effects on microtubule dynamics.« less

Authors:
 [1]; ORCiD logo [2]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Biochemistry & Biophysics. Program in Molecular and Cellular Biophysics
  2. Univ. of North Carolina, Chapel Hill, NC (United States). Program in Molecular and Cellular Biophysics. Dept. of Biology
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1834802
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Volume: 14; Journal Issue: 7; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; Tubulins; Microtubules; Crystal structure; Microtubule dynamics; Sequence alignment; Built structures; Electron density; Polymerases

Citation Formats

Leano, Jonathan B., and Slep, Kevin C. Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1. United States: N. p., 2019. Web. doi:10.1371/journal.pone.0219823.
Leano, Jonathan B., & Slep, Kevin C. Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1. United States. https://doi.org/10.1371/journal.pone.0219823
Leano, Jonathan B., and Slep, Kevin C. Fri . "Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1". United States. https://doi.org/10.1371/journal.pone.0219823. https://www.osti.gov/servlets/purl/1834802.
@article{osti_1834802,
title = {Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1},
author = {Leano, Jonathan B. and Slep, Kevin C.},
abstractNote = {Tubulin-binding TOG domains are found arrayed in a number of proteins that regulate microtubule dynamics. While much is known about the structure and function of TOG domains from the XMAP215 microtubule polymerase family, less in known about the TOG domain array found in animal CLASP family members. The animal CLASP TOG array promotes microtubule pause, potentiates rescue, and limits catastrophe. How structurally distinct the TOG domains of animal CLASP are from one another, from XMAP215 family TOG domains, and whether a specific order of structurally distinct TOG domains in the TOG array is conserved across animal CLASP family members is poorly understood. We present the x-ray crystal structures of Homo sapiens (H.s.) CLASP1 TOG1 and TOG2. The structures of H.s. CLASP1 TOG1 and TOG2 are distinct from each other and from the previously determined structure of Mus musculus (M.m.) CLASP2 TOG3. Comparative analyses of CLASP family TOG domain structures determined to date across species and paralogs supports a conserved CLASP TOG array paradigm in which structurally distinct TOG domains are arrayed in a specific order. H.s. CLASP1 TOG1 bears structural similarity to the free-tubulin binding TOG domains of the XMAP215 family but lacks many of the key tubulin-binding determinants found in XMAP215 family TOG domains. This aligns with studies that report that animal CLASP family TOG1 domains cannot bind free tubulin or microtubules. In contrast, animal CLASP family TOG2 and TOG3 domains have reported microtubule-binding activity but are structurally distinct from the free-tubulin binding TOG domains of the XMAP215 family. H.s. CLASP1 TOG2 has a convex architecture, predicted to engage a hyper-curved tubulin state that may underlie its ability to limit microtubule catastrophe and promote rescue. M.m. CLASP2 TOG3 has unique structural elements in the C-terminal half of its α-solenoid domain that our modeling studies implicate in binding to laterally-associated tubulin subunits in the microtubule lattice in a mode similar to, yet distinct from those predicted for the XMAP215 family TOG4 domain. The potential ability of the animal CLASP family TOG3 domain to engage lateral tubulin subunits may underlie the microtubule rescue activity ascribed to the domain. These findings highlight the structural diversity of TOG domains within the CLASP family TOG array and provide a molecular foundation for understanding CLASP-dependent effects on microtubule dynamics.},
doi = {10.1371/journal.pone.0219823},
journal = {PLoS ONE},
number = 7,
volume = 14,
place = {United States},
year = {Fri Jul 19 00:00:00 EDT 2019},
month = {Fri Jul 19 00:00:00 EDT 2019}
}

Works referenced in this record:

Electrostatics of nanosystems: Application to microtubules and the ribosome
journal, August 2001

  • Baker, N. A.; Sept, D.; Joseph, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 18, p. 10037-10041
  • DOI: 10.1073/pnas.181342398

Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments
journal, July 2007

  • Tsvetkov, Andrey S.; Samsonov, Andrey; Akhmanova, Anna
  • Cell Motility and the Cytoskeleton, Vol. 64, Issue 7
  • DOI: 10.1002/cm.20201

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells
journal, June 2011

  • Li, Wenjing; Miki, Tomohiro; Watanabe, Takashi
  • Journal of Cell Biology, Vol. 193, Issue 6
  • DOI: 10.1083/jcb.201101108

The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state
journal, August 2007

  • Sousa, Aureliana; Reis, Rita; Sampaio, Paula
  • Cell Motility and the Cytoskeleton, Vol. 64, Issue 8
  • DOI: 10.1002/cm.20208

Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

TOG–tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation
journal, May 2017

  • Byrnes, Amy E.; Slep, Kevin C.
  • The Journal of Cell Biology, Vol. 216, Issue 6
  • DOI: 10.1083/jcb.201610090

Drosophila melanogaster Mini Spindles TOG3 Utilizes Unique Structural Elements to Promote Domain Stability and Maintain a TOG1- and TOG2-like Tubulin-binding Surface
journal, February 2015

  • Howard, Amy E.; Fox, Jaime C.; Slep, Kevin C.
  • Journal of Biological Chemistry, Vol. 290, Issue 16
  • DOI: 10.1074/jbc.M114.633826

Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end
journal, February 2005

  • Slep, Kevin C.; Rogers, Stephen L.; Elliott, Sarah L.
  • Journal of Cell Biology, Vol. 168, Issue 4
  • DOI: 10.1083/jcb.200410114

The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans
journal, February 2008


Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function
journal, October 2006

  • Pereira, Ana L.; Pereira, António J.; Maia, Ana R. R.
  • Molecular Biology of the Cell, Vol. 17, Issue 10
  • DOI: 10.1091/mbc.e06-07-0579

CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain
journal, July 2018


CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics
journal, July 2015

  • Maki, Takahisa; Grimaldi, Ashley D.; Fuchigami, Sotaro
  • Journal of Molecular Biology, Vol. 427, Issue 14
  • DOI: 10.1016/j.jmb.2015.05.012

Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins
journal, August 2015


Crystallization of a fragment of human fibronectin: Introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine
journal, May 1994

  • Leahy, Daniel J.; Erickson, Harold P.; Aukhil, Ikramuddin
  • Proteins: Structure, Function, and Genetics, Vol. 19, Issue 1
  • DOI: 10.1002/prot.340190107

Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments
journal, May 2018

  • McIntosh, J. Richard; O’Toole, Eileen; Morgan, Garry
  • Journal of Cell Biology, Vol. 217, Issue 8
  • DOI: 10.1083/jcb.201802138

An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal
journal, July 2009


Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170, and EB1
journal, September 2007


Microtubule Polymerization Dynamics
journal, November 1997


Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization
journal, March 1981

  • Carlier, Marie France; Pantaloni, Dominique
  • Biochemistry, Vol. 20, Issue 7
  • DOI: 10.1021/bi00510a030

CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis
journal, December 2007

  • Kirik, Viktor; Herrmann, Ullrich; Parupalli, Chaithanyarani
  • Journal of Cell Science, Vol. 120, Issue 24
  • DOI: 10.1242/jcs.024950

A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins
journal, October 2012


Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
journal, April 1996

  • Caplow, M.; Shanks, J.
  • Molecular Biology of the Cell, Vol. 7, Issue 4
  • DOI: 10.1091/mbc.7.4.663

SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase
journal, June 2011

  • van der Vaart, Babet; Manatschal, Cristina; Grigoriev, Ilya
  • The Journal of Cell Biology, Vol. 193, Issue 6
  • DOI: 10.1083/jcb.201012179

A TOGL domain specifically targets yeast CLASP to kinetochores to stabilize kinetochore microtubules
journal, May 2014

  • Funk, Caroline; Schmeiser, Verena; Ortiz, Jennifer
  • The Journal of Cell Biology, Vol. 205, Issue 4
  • DOI: 10.1083/jcb.201310018

EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends
journal, April 2012


Orbit, a Novel Microtubule-Associated Protein Essential for Mitosis in Drosophila melanogaster
journal, April 2000

  • Inoue, Yoshihiro H.; do Carmo Avides, Maria; Shiraki, Michina
  • Journal of Cell Biology, Vol. 149, Issue 1
  • DOI: 10.1083/jcb.149.1.153

A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end
journal, November 1987


Five factors can reconstitute all three phases of microtubule polymerization dynamics
journal, October 2016

  • Moriwaki, Takashi; Goshima, Gohta
  • The Journal of Cell Biology, Vol. 215, Issue 3
  • DOI: 10.1083/jcb.201604118

Dynamic instability of microtubule growth
journal, November 1984

  • Mitchison, Tim; Kirschner, Marc
  • Nature, Vol. 312, Issue 5991
  • DOI: 10.1038/312237a0

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

The Arabidopsis CLASP Gene Encodes a Microtubule-Associated Protein Involved in Cell Expansion and Division
journal, September 2007

  • Ambrose, J. Christian; Shoji, Tsubasa; Kotzer, Amanda M.
  • The Plant Cell, Vol. 19, Issue 9
  • DOI: 10.1105/tpc.107.053777

mini spindles : A Gene Encoding a Conserved Microtubule-Associated Protein Required for the Integrity of the Mitotic Spindle in
journal, September 1999

  • Cullen, C. Fiona; Deák, Peter; Glover, David M.
  • The Journal of Cell Biology, Vol. 146, Issue 5
  • DOI: 10.1083/jcb.146.5.1005

The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
journal, August 2014

  • Fox, Jaime C.; Howard, Amy E.; Currie, Joshua D.
  • Molecular Biology of the Cell, Vol. 25, Issue 16
  • DOI: 10.1091/mbc.e13-08-0501

The CENP-F-like Proteins HCP-1 and HCP-2 Target CLASP to Kinetochores to Mediate Chromosome Segregation
journal, April 2005


Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.
journal, October 1988

  • Walker, R. A.; O'Brien, E. T.; Pryer, N. K.
  • The Journal of Cell Biology, Vol. 107, Issue 4
  • DOI: 10.1083/jcb.107.4.1437

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

A TOG:  -tubulin Complex Structure Reveals Conformation-Based Mechanisms for a Microtubule Polymerase
journal, August 2012


CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
journal, January 2005

  • Mimori-Kiyosue, Yuko; Grigoriev, Ilya; Lansbergen, Gideon
  • The Journal of Cell Biology, Vol. 168, Issue 1
  • DOI: 10.1083/jcb.200405094

Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin
journal, November 2012

  • Li, Wenjing; Moriwaki, Takashi; Tani, Tomomi
  • The Journal of Cell Biology, Vol. 199, Issue 5
  • DOI: 10.1083/jcb.201206101

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Structure of the αβ tubulin dimer by electron crystallography
journal, January 1998

  • Nogales, Eva; Wolf, Sharon G.; Downing, Kenneth H.
  • Nature, Vol. 391, Issue 6663
  • DOI: 10.1038/34465

Visualization of the dynamic instability of individual microtubules by dark-field microscopy
journal, June 1986

  • Horio, Tetsuya; Hotani, Hirokazu
  • Nature, Vol. 321, Issue 6070
  • DOI: 10.1038/321605a0

Structural insights into the EB1?APC interaction
journal, December 2004


NMRPipe: A multidimensional spectral processing system based on UNIX pipes
journal, November 1995

  • Delaglio, Frank; Grzesiek, Stephan; Vuister, GeertenW.
  • Journal of Biomolecular NMR, Vol. 6, Issue 3
  • DOI: 10.1007/bf00197809

Crystal Structure of a TOG Domain: Conserved Features of XMAP215/Dis1-Family TOG Domains and Implications for Tubulin Binding
journal, March 2007


A Cryptic TOG Domain with a Distinct Architecture Underlies CLASP-Dependent Bipolar Spindle Formation
journal, June 2013


Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends
journal, June 2017


Structural insights into the EB1–APC interaction
journal, February 2005


Proteins that control the geometry of microtubules at the ends of cilia
journal, September 2018

  • Louka, Panagiota; Vasudevan, Krishna Kumar; Guha, Mayukh
  • Journal of Cell Biology, Vol. 217, Issue 12
  • DOI: 10.1083/jcb.201804141

Dali server update
journal, April 2016

  • Holm, Liisa; Laakso, Laura M.
  • Nucleic Acids Research, Vol. 44, Issue W1
  • DOI: 10.1093/nar/gkw357

Drosophila melanogaster Mini Spindles TOG3 Utilizes Unique Structural Elements to Promote Domain Stability and Maintain a TOG1- and TOG2-like Tubulin-binding Surface
text, January 2015

  • C., Slep, Kevin; E., Howard, Amy; C., Fox, Jaime
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/3enh-6a63

TOG–tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation
text, January 2017

  • C., Slep, Kevin; E., Byrnes, Amy
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/9e2t-rs13

The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
text, January 2014

  • D., Currie, Joshua; C., Fox, Jaime; E., Howard, Amy
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/c0v2-t263

Crescerin uses a TOG domain array to regulate microtubules in the primary cilium
text, January 2015

  • C., Wood, Cameron; C., Slep, Kevin; J., Dickinson, Daniel
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/p8wa-dp22

Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
text, January 1996

  • Michael, Caplow,; John, Shanks,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/t2q7-fa20

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

An EB1-binding motif acts as a microtubule tip localization signal
text, January 2009


Crescerin uses a TOG domain array to regulate microtubules in the primary cilium
journal, November 2015

  • Das, Alakananda; Dickinson, Daniel J.; Wood, Cameron C.
  • Molecular Biology of the Cell, Vol. 26, Issue 23
  • DOI: 10.1091/mbc.e15-08-0603

A Cryptic TOG Domain with a Distinct Architecture Underlies CLASP-Dependent Bipolar Spindle Formation
text, January 2013

  • L., Rogers, Stephen; C., Slep, Kevin; B., Leano, Jonathan
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/940k-g607

Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments
journal, July 2007

  • Tsvetkov, Andrey S.; Samsonov, Andrey; Akhmanova, Anna
  • Cell Motility and the Cytoskeleton, Vol. 64, Issue 7
  • DOI: 10.1002/cm.20201

Crystallization of a fragment of human fibronectin: Introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine
journal, May 1994

  • Leahy, Daniel J.; Erickson, Harold P.; Aukhil, Ikramuddin
  • Proteins: Structure, Function, and Genetics, Vol. 19, Issue 1
  • DOI: 10.1002/prot.340190107

EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends
journal, April 2012


Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins
journal, August 2015


The CENP-F-like Proteins HCP-1 and HCP-2 Target CLASP to Kinetochores to Mediate Chromosome Segregation
journal, April 2005


A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins
journal, October 2012


A Cytoskeletal Symphony: Owed to TOG
journal, July 2018


CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics
journal, July 2015

  • Maki, Takahisa; Grimaldi, Ashley D.; Fuchigami, Sotaro
  • Journal of Molecular Biology, Vol. 427, Issue 14
  • DOI: 10.1016/j.jmb.2015.05.012

Crystal Structure of a TOG Domain: Conserved Features of XMAP215/Dis1-Family TOG Domains and Implications for Tubulin Binding
journal, March 2007


Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends
journal, June 2017


Concerning the efficiency of the treadmilling phenomenon with microtubules.
journal, December 1982


The 4 Å X-Ray Structure of a Tubulin:Stathmin-like Domain Complex
journal, September 2000


CLIP-170 Highlights Growing Microtubule Ends In Vivo
journal, February 1999


CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts
journal, March 2001


The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules
journal, July 2000


Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization
journal, March 1981

  • Carlier, Marie France; Pantaloni, Dominique
  • Biochemistry, Vol. 20, Issue 7
  • DOI: 10.1021/bi00510a030

Visualization of the dynamic instability of individual microtubules by dark-field microscopy
journal, June 1986

  • Horio, Tetsuya; Hotani, Hirokazu
  • Nature, Vol. 321, Issue 6070
  • DOI: 10.1038/321605a0

De novo mutations of TUBB2A cause infantile-onset epilepsy and developmental delay
journal, March 2020


A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end
journal, November 1987


Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.
journal, October 1988

  • Walker, R. A.; O'Brien, E. T.; Pryer, N. K.
  • The Journal of Cell Biology, Vol. 107, Issue 4
  • DOI: 10.1083/jcb.107.4.1437

mini spindles : A Gene Encoding a Conserved Microtubule-Associated Protein Required for the Integrity of the Mitotic Spindle in
journal, September 1999

  • Cullen, C. Fiona; Deák, Peter; Glover, David M.
  • The Journal of Cell Biology, Vol. 146, Issue 5
  • DOI: 10.1083/jcb.146.5.1005

Orbit, a Novel Microtubule-Associated Protein Essential for Mitosis in Drosophila melanogaster
journal, April 2000

  • Inoue, Yoshihiro H.; do Carmo Avides, Maria; Shiraki, Michina
  • Journal of Cell Biology, Vol. 149, Issue 1
  • DOI: 10.1083/jcb.149.1.153

CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
journal, January 2005

  • Mimori-Kiyosue, Yuko; Grigoriev, Ilya; Lansbergen, Gideon
  • The Journal of Cell Biology, Vol. 168, Issue 1
  • DOI: 10.1083/jcb.200405094

Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end
journal, February 2005

  • Slep, Kevin C.; Rogers, Stephen L.; Elliott, Sarah L.
  • Journal of Cell Biology, Vol. 168, Issue 4
  • DOI: 10.1083/jcb.200410114

SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase
journal, June 2011

  • van der Vaart, Babet; Manatschal, Cristina; Grigoriev, Ilya
  • The Journal of Cell Biology, Vol. 193, Issue 6
  • DOI: 10.1083/jcb.201012179

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells
journal, June 2011

  • Li, Wenjing; Miki, Tomohiro; Watanabe, Takashi
  • Journal of Cell Biology, Vol. 193, Issue 6
  • DOI: 10.1083/jcb.201101108

Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin
journal, November 2012

  • Li, Wenjing; Moriwaki, Takashi; Tani, Tomomi
  • The Journal of Cell Biology, Vol. 199, Issue 5
  • DOI: 10.1083/jcb.201206101

Five factors can reconstitute all three phases of microtubule polymerization dynamics
journal, October 2016

  • Moriwaki, Takashi; Goshima, Gohta
  • The Journal of Cell Biology, Vol. 215, Issue 3
  • DOI: 10.1083/jcb.201604118

Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments
journal, May 2018

  • McIntosh, J. Richard; O’Toole, Eileen; Morgan, Garry
  • Journal of Cell Biology, Vol. 217, Issue 8
  • DOI: 10.1083/jcb.201802138

Proteins that control the geometry of microtubules at the ends of cilia
journal, September 2018

  • Louka, Panagiota; Vasudevan, Krishna Kumar; Guha, Mayukh
  • Journal of Cell Biology, Vol. 217, Issue 12
  • DOI: 10.1083/jcb.201804141

Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
journal, April 1996

  • Caplow, M.; Shanks, J.
  • Molecular Biology of the Cell, Vol. 7, Issue 4
  • DOI: 10.1091/mbc.7.4.663

The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
journal, August 2014

  • Fox, Jaime C.; Howard, Amy E.; Currie, Joshua D.
  • Molecular Biology of the Cell, Vol. 25, Issue 16
  • DOI: 10.1091/mbc.e13-08-0501

An isolated CLASP TOG domain suppresses microtubule catastrophe and promotes rescue
journal, June 2018

  • Majumdar, Shreoshi; Kim, Tae; Chen, Zhe
  • Molecular Biology of the Cell, Vol. 29, Issue 11
  • DOI: 10.1091/mbc.e17-12-0748

Human CLASP2 specifically regulates microtubule catastrophe and rescue
journal, May 2018

  • Lawrence, Elizabeth J.; Arpag˘, Göker; Norris, Stephen R.
  • Molecular Biology of the Cell, Vol. 29, Issue 10
  • DOI: 10.1091/mbc.e18-01-0016

Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

Dali server update
journal, April 2016

  • Holm, Liisa; Laakso, Laura M.
  • Nucleic Acids Research, Vol. 44, Issue W1
  • DOI: 10.1093/nar/gkw357

The Arabidopsis CLASP Gene Encodes a Microtubule-Associated Protein Involved in Cell Expansion and Division
journal, September 2007

  • Ambrose, J. Christian; Shoji, Tsubasa; Kotzer, Amanda M.
  • The Plant Cell, Vol. 19, Issue 9
  • DOI: 10.1105/tpc.107.053777

Maximum-likelihood density modification
journal, August 2000

  • Terwilliger, Thomas C.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 56, Issue 8
  • DOI: 10.1107/s0907444900005072

The structure of the TOG-like domain of Drosophila melanogaster Mast/Orbit
journal, June 2013

  • De la Mora-Rey, Teresa; Guenther, Brian D.; Finzel, Barry C.
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 69, Issue 7
  • DOI: 10.1107/s1744309113015182

A TOG:  -tubulin Complex Structure Reveals Conformation-Based Mechanisms for a Microtubule Polymerase
journal, August 2012


The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans
journal, February 2008


Drosophila melanogaster Mini Spindles TOG3 Utilizes Unique Structural Elements to Promote Domain Stability and Maintain a TOG1- and TOG2-like Tubulin-binding Surface
text, January 2015

  • C., Slep, Kevin; E., Howard, Amy; C., Fox, Jaime
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/3enh-6a63

A Cryptic TOG Domain with a Distinct Architecture Underlies CLASP-Dependent Bipolar Spindle Formation
text, January 2013

  • L., Rogers, Stephen; C., Slep, Kevin; B., Leano, Jonathan
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/940k-g607

TOG–tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation
text, January 2017

  • C., Slep, Kevin; E., Byrnes, Amy
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/9e2t-rs13

Crescerin uses a TOG domain array to regulate microtubules in the primary cilium
text, January 2015

  • C., Wood, Cameron; C., Slep, Kevin; J., Dickinson, Daniel
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/p8wa-dp22

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

An EB1-binding motif acts as a microtubule tip localization signal
text, January 2009


A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
journal, August 2014


Structural basis of tubulin recruitment and assembly by microtubule polymerases with tumor overexpressed gene (TOG) domain arrays
journal, November 2018

  • Nithianantham, Stanley; Cook, Brian D.; Beans, Madeleine
  • eLife, Vol. 7
  • DOI: 10.7554/elife.38922

Works referencing / citing this record:

The Inner Junction Complex of the Cilia is an Interaction Hub that Involves Tubulin Post-translational Modifications
journal, February 2020


CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments
journal, November 2019

  • Girão, Hugo; Okada, Naoyuki; Rodrigues, Tony A.
  • The Journal of Cell Biology
  • DOI: 10.1083/jcb.201905080

CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments
journal, November 2019

  • Girão, Hugo; Okada, Naoyuki; Rodrigues, Tony A.
  • The Journal of Cell Biology
  • DOI: 10.1083/jcb.201905080