DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving application performance with biased distributions of quantum states

Abstract

We consider the properties of a specific distribution of mixed quantum states of arbitrary dimension that can be biased towards a specific mean purity. In particular, we analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients. We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert–Schmidt distributions in any dimension. Numerical simulations suggest that this value recovers the Hilbert–Schmidt distribution exactly, offering an alternative and intuitive physical interpretation for ensembles of Hilbert–Schmidt-distributed random quantum states. We then demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert–Schmidt distributions results in measurable performance advantages in machine-learning-based quantum state tomography systems and Bayesian quantum state reconstruction. Finally, we experimentally characterize the distribution of quantum states generated by both a cloud-accessed IBM quantum computer and an in-house source of polarization-entangled photons. In each case, our method can more closely match the underlying distribution than either Bures or Hilbert–Schmidt distributed states for various experimental conditions.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ;
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; US Army Research Office (ARO)
OSTI Identifier:
1832932
Alternate Identifier(s):
OSTI ID: 1833950
Grant/Contract Number:  
AC05-00OR22725; W911NF-19-2-0087; W911NF-20-2-0168
Resource Type:
Published Article
Journal Name:
Physical Review Research
Additional Journal Information:
Journal Name: Physical Review Research Journal Volume: 3 Journal Issue: 4; Journal ID: ISSN 2643-1564
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; quantum computation; quantum information processing

Citation Formats

Lohani, Sanjaya, Lukens, Joseph M., Jones, Daniel E., Searles, Thomas A., Glasser, Ryan T., and Kirby, Brian T. Improving application performance with biased distributions of quantum states. United States: N. p., 2021. Web. doi:10.1103/PhysRevResearch.3.043145.
Lohani, Sanjaya, Lukens, Joseph M., Jones, Daniel E., Searles, Thomas A., Glasser, Ryan T., & Kirby, Brian T. Improving application performance with biased distributions of quantum states. United States. https://doi.org/10.1103/PhysRevResearch.3.043145
Lohani, Sanjaya, Lukens, Joseph M., Jones, Daniel E., Searles, Thomas A., Glasser, Ryan T., and Kirby, Brian T. Mon . "Improving application performance with biased distributions of quantum states". United States. https://doi.org/10.1103/PhysRevResearch.3.043145.
@article{osti_1832932,
title = {Improving application performance with biased distributions of quantum states},
author = {Lohani, Sanjaya and Lukens, Joseph M. and Jones, Daniel E. and Searles, Thomas A. and Glasser, Ryan T. and Kirby, Brian T.},
abstractNote = {We consider the properties of a specific distribution of mixed quantum states of arbitrary dimension that can be biased towards a specific mean purity. In particular, we analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients. We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert–Schmidt distributions in any dimension. Numerical simulations suggest that this value recovers the Hilbert–Schmidt distribution exactly, offering an alternative and intuitive physical interpretation for ensembles of Hilbert–Schmidt-distributed random quantum states. We then demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert–Schmidt distributions results in measurable performance advantages in machine-learning-based quantum state tomography systems and Bayesian quantum state reconstruction. Finally, we experimentally characterize the distribution of quantum states generated by both a cloud-accessed IBM quantum computer and an in-house source of polarization-entangled photons. In each case, our method can more closely match the underlying distribution than either Bures or Hilbert–Schmidt distributed states for various experimental conditions.},
doi = {10.1103/PhysRevResearch.3.043145},
journal = {Physical Review Research},
number = 4,
volume = 3,
place = {United States},
year = {Mon Nov 29 00:00:00 EST 2021},
month = {Mon Nov 29 00:00:00 EST 2021}
}

Works referenced in this record:

Classification and reconstruction of optical quantum states with deep neural networks
journal, September 2021


Volume of the set of separable states. II
journal, November 1999


Quantum discord for general two-qubit states: Analytical progress
journal, May 2011


Separability-entanglement classifier via machine learning
journal, July 2018


Monte Carlo sampling from the quantum state space. II
journal, April 2015


Induced measures in the space of mixed quantum states
journal, August 2001

  • Zyczkowski, Karol; Sommers, Hans-Jürgen
  • Journal of Physics A: Mathematical and General, Vol. 34, Issue 35
  • DOI: 10.1088/0305-4470/34/35/335

Average fidelity between random quantum states
journal, March 2005


Practical Bayesian tomography
journal, March 2016


Recovering full coherence in a qubit by measuring half of its environment
journal, December 2015


Machine learning meets quantum foundations: A brief survey
journal, October 2020

  • Bharti, Kishor; Haug, Tobias; Vedral, Vlatko
  • AVS Quantum Science, Vol. 2, Issue 3
  • DOI: 10.1116/5.0007529

Entanglement swapping of two arbitrarily degraded entangled states
journal, July 2016

  • Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.
  • Physical Review A, Vol. 94, Issue 1
  • DOI: 10.1103/PhysRevA.94.012336

A Better Bound on the Variance
journal, April 2000


Photonic State Tomography
book, May 2005


Reconfigurable Quantum Local Area Network Over Deployed Fiber
journal, October 2021


Optimal, reliable estimation of quantum states
journal, April 2010


A practical and efficient approach for Bayesian quantum state estimation
journal, June 2020

  • Lukens, Joseph M.; Law, Kody J. H.; Jasra, Ajay
  • New Journal of Physics, Vol. 22, Issue 6
  • DOI: 10.1088/1367-2630/ab8efa

A Bayesian analysis of classical shadows
journal, July 2021


Optimal measurements to access classical correlations of two-qubit states
journal, January 2011


Cryptographic distinguishability measures for quantum-mechanical states
journal, May 1999

  • Fuchs, C. A.; van de Graaf, J.
  • IEEE Transactions on Information Theory, Vol. 45, Issue 4
  • DOI: 10.1109/18.761271

Entanglement classification via neural network quantum states
journal, April 2020

  • Harney, Cillian; Pirandola, Stefano; Ferraro, Alessandro
  • New Journal of Physics, Vol. 22, Issue 4
  • DOI: 10.1088/1367-2630/ab783d

Random quantum states
journal, November 1990


On the Experimental Feasibility of Quantum State Reconstruction via Machine Learning
journal, January 2021

  • Lohani, Sanjaya; Searles, Thomas A.; Kirby, Brian T.
  • IEEE Transactions on Quantum Engineering, Vol. 2
  • DOI: 10.1109/TQE.2021.3106958

Adaptive bandwidth management for entanglement distribution in quantum networks
journal, January 2021

  • Lingaraju, Navin B.; Lu, Hsuan-Hao; Seshadri, Suparna
  • Optica, Vol. 8, Issue 3
  • DOI: 10.1364/OPTICA.413657

MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
journal, August 2013

  • Cotter, S. L.; Roberts, G. O.; Stuart, A. M.
  • Statistical Science, Vol. 28, Issue 3
  • DOI: 10.1214/13-STS421

Predicting many properties of a quantum system from very few measurements
journal, June 2020


Statistical Ensembles of Complex, Quaternion, and Real Matrices
journal, March 1965

  • Ginibre, Jean
  • Journal of Mathematical Physics, Vol. 6, Issue 3
  • DOI: 10.1063/1.1704292

Quantum state estimation when qubits are lost: a no-data-left-behind approach
journal, April 2017


Active learning machine learns to create new quantum experiments
journal, January 2018

  • Melnikov, Alexey A.; Poulsen Nautrup, Hendrik; Krenn, Mario
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1714936115

Fully Arbitrary Control of Frequency-Bin Qubits
journal, September 2020


Quantum Entanglement in Random Physical States
journal, July 2012


Statistical properties of random density matrices
journal, August 2004

  • Sommers, Hans-Jürgen; yczkowski, Karol
  • Journal of Physics A: Mathematical and General, Vol. 37, Issue 35
  • DOI: 10.1088/0305-4470/37/35/004

Pseudo-Bayesian quantum tomography with rank-adaptation
journal, May 2017


Direct Estimations of Linear and Nonlinear Functionals of a Quantum State
journal, May 2002


Robust Multiwavelength All-Fiber Source of Polarization-Entangled Photons With Built-In Analyzer Alignment Signal
journal, January 2009

  • Wang, S. X.; Kanter, G. S.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, Issue 6
  • DOI: 10.1109/JSTQE.2009.2022278

1-Bit matrix completion: PAC-Bayesian analysis of a variational approximation
journal, September 2017


All-fiber photon-pair source for quantum communications
journal, July 2002

  • Fiorentino, M.; Voss, P. L.; Sharping, J. E.
  • IEEE Photonics Technology Letters, Vol. 14, Issue 7
  • DOI: 10.1109/LPT.2002.1012406

Machine learning assisted quantum state estimation
journal, July 2020

  • Lohani, Sanjaya; Kirby, Brian T.; Brodsky, Michael
  • Machine Learning: Science and Technology, Vol. 1, Issue 3
  • DOI: 10.1088/2632-2153/ab9a21

Random Bures mixed states and the distribution of their purity
journal, January 2010

  • Al Osipov, V.; Sommers, H-J; Życzkowski, K.
  • Journal of Physics A: Mathematical and Theoretical, Vol. 43, Issue 5
  • DOI: 10.1088/1751-8113/43/5/055302

A Bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution
journal, January 2015

  • Mai, The Tien; Alquier, Pierre
  • Electronic Journal of Statistics, Vol. 9, Issue 1
  • DOI: 10.1214/15-EJS1020

Thermalization of strongly interacting bosons after spontaneous emissions in optical lattices
journal, January 2015

  • Schachenmayer, Johannes; Pollet, Lode; Troyer, Matthias
  • EPJ Quantum Technology, Vol. 2, Issue 1
  • DOI: 10.1140/epjqt15

Bures volume of the set of mixed quantum states
journal, September 2003

  • Sommers, Hans-J rgen; Zyczkowski, Karol
  • Journal of Physics A: Mathematical and General, Vol. 36, Issue 39
  • DOI: 10.1088/0305-4470/36/39/308

Bipartite entanglement of quantum states in a pair basis
journal, December 2014


On the Distinguishability of Random Quantum States
journal, March 2007


Efficient Method for Computing the Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise
journal, February 2012


Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence
journal, August 2012

  • Alonso, J. L.; Clemente-Gallardo, J.; Cuchí, J. C.
  • The Journal of Chemical Physics, Vol. 137, Issue 5
  • DOI: 10.1063/1.4737861

Machine learning pipeline for quantum state estimation with incomplete measurements
journal, May 2021

  • Danaci, Onur; Lohani, Sanjaya; Kirby, Brian T.
  • Machine Learning: Science and Technology, Vol. 2, Issue 3
  • DOI: 10.1088/2632-2153/abe5f5