DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers

Abstract

A series of symmetric poly[(oligo(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]-block-polystyrene (PsOEGMA-PS) diblock copolymers were synthesized as a model system to probe the effect of charge fraction on the phase behavior of charged-neutral single-ion conducting diblock copolymers. Small-angle X-ray scattering (SAXS) experiments showed that increasing the charge fraction does not alter the ordered phase morphology (lamellar) but increases the order–disorder transition temperature (TODT) significantly. Additionally, the effective Flory–Huggins interaction parameter (χeff) was found to increase linearly with the charge fraction, similar to the case of conventional salt-doped diblock copolymers. This indicates that the effect of counterion solvation, attributed to the significant mismatch between the dielectric constant of each block, provides the dominant effect in tuning the phase behavior of this charged diblock copolymer. Lastly, we therefore infer that electrostatic cohesion (local charge ordering induced by Coulombic interactions), which is predicted to suppress microphase separation and lead to asymmetric phase diagrams, only plays a minor role in this model system.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
Publication Date:
Research Org.:
Univ. of Minnesota, Twin Cities, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1831774
Grant/Contract Number:  
SC0017809
Resource Type:
Accepted Manuscript
Journal Name:
ACS Macro Letters
Additional Journal Information:
Journal Volume: 10; Journal Issue: 8; Journal ID: ISSN 2161-1653
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Anions; Counterions; Solvation; Copolymers; Polymers

Citation Formats

Zhang, Bo, Zheng, Caini, Sims, Michael B., Bates, Frank S., and Lodge, Timothy P. Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers. United States: N. p., 2021. Web. doi:10.1021/acsmacrolett.1c00393.
Zhang, Bo, Zheng, Caini, Sims, Michael B., Bates, Frank S., & Lodge, Timothy P. Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers. United States. https://doi.org/10.1021/acsmacrolett.1c00393
Zhang, Bo, Zheng, Caini, Sims, Michael B., Bates, Frank S., and Lodge, Timothy P. Fri . "Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers". United States. https://doi.org/10.1021/acsmacrolett.1c00393. https://www.osti.gov/servlets/purl/1831774.
@article{osti_1831774,
title = {Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers},
author = {Zhang, Bo and Zheng, Caini and Sims, Michael B. and Bates, Frank S. and Lodge, Timothy P.},
abstractNote = {A series of symmetric poly[(oligo(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]-block-polystyrene (PsOEGMA-PS) diblock copolymers were synthesized as a model system to probe the effect of charge fraction on the phase behavior of charged-neutral single-ion conducting diblock copolymers. Small-angle X-ray scattering (SAXS) experiments showed that increasing the charge fraction does not alter the ordered phase morphology (lamellar) but increases the order–disorder transition temperature (TODT) significantly. Additionally, the effective Flory–Huggins interaction parameter (χeff) was found to increase linearly with the charge fraction, similar to the case of conventional salt-doped diblock copolymers. This indicates that the effect of counterion solvation, attributed to the significant mismatch between the dielectric constant of each block, provides the dominant effect in tuning the phase behavior of this charged diblock copolymer. Lastly, we therefore infer that electrostatic cohesion (local charge ordering induced by Coulombic interactions), which is predicted to suppress microphase separation and lead to asymmetric phase diagrams, only plays a minor role in this model system.},
doi = {10.1021/acsmacrolett.1c00393},
journal = {ACS Macro Letters},
number = 8,
volume = 10,
place = {United States},
year = {Fri Jul 23 00:00:00 EDT 2021},
month = {Fri Jul 23 00:00:00 EDT 2021}
}

Works referenced in this record:

Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes
journal, September 2015


Microphase separation of charged diblock copolymers: melts and solutions
journal, September 1992


Anomalous Phase Behavior of Ionic Polymer Blends and Ionic Copolymers
journal, June 2017


Salt Doping in PEO-Containing Block Copolymers: Counterion and Concentration Effects
journal, April 2009

  • Young, Wen-Shiue; Epps, Thomas H.
  • Macromolecules, Vol. 42, Issue 7
  • DOI: 10.1021/ma802799p

Fluctuation effects in the theory of microphase separation in block copolymers
journal, July 1987

  • Fredrickson, Glenn H.; Helfand, Eugene
  • The Journal of Chemical Physics, Vol. 87, Issue 1
  • DOI: 10.1063/1.453566

Synthesis and Surface Characterization of Well-Defined Amphiphilic Block Copolymers Containing Poly[oligo(ethylene glycol) methacrylate] Segments
journal, January 2006

  • Ishizone, Takashi; Han, Seok; Hagiwara, Mamoru
  • Macromolecules, Vol. 39, Issue 3
  • DOI: 10.1021/ma0521699

Ion-Complexation-Induced Changes in the Interaction Parameter and the Chain Conformation of PS- b -PMMA Copolymers
journal, July 2008

  • Wang, Jia-Yu; Chen, Wei; Russell, Thomas P.
  • Macromolecules, Vol. 41, Issue 13
  • DOI: 10.1021/ma800718z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Ionic Conduction and Dielectric Response of Poly(imidazolium acrylate) Ionomers
journal, April 2012

  • Choi, U. Hyeok; Lee, Minjae; Wang, Sharon
  • Macromolecules, Vol. 45, Issue 9
  • DOI: 10.1021/ma202784e

Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups
journal, June 2015


Morphological Phase Behavior of Poly(RTIL)-Containing Diblock Copolymer Melts
journal, April 2012

  • Scalfani, Vincent F.; Wiesenauer, Erin F.; Ekblad, John R.
  • Macromolecules, Vol. 45, Issue 10
  • DOI: 10.1021/ma300328u

Theory of Microphase Separation in Block Copolymers
journal, November 1980


Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity
journal, January 2015

  • Sing, Charles E.; Zwanikken, Jos W.; de la Cruz, Monica Olvera
  • The Journal of Chemical Physics, Vol. 142, Issue 3
  • DOI: 10.1063/1.4905830

Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers
journal, November 2011


Role of Tethered Ion Placement on Polymerized Ionic Liquid Structure and Conductivity: Pendant versus Backbone Charge Placement
journal, July 2016


Influence of Bound Ion on the Morphology and Conductivity of Anion-Conducting Block Copolymers
journal, February 2013

  • Sudre, Guillaume; Inceoglu, Sebnem; Cotanda, Pepa
  • Macromolecules, Vol. 46, Issue 4
  • DOI: 10.1021/ma302357k

Thermodynamics of Salt-Doped Block Copolymers
journal, July 2014

  • Nakamura, Issei; Wang, Zhen-Gang
  • ACS Macro Letters, Vol. 3, Issue 8
  • DOI: 10.1021/mz500301z

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries
journal, January 2001

  • Ruzette, Anne-Valérie G.; Soo, Philip P.; Sadoway, Donald R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 6
  • DOI: 10.1149/1.1368097

Polymer Electrolytes
journal, July 2013


Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter
journal, January 2012


Block Copolymer Thermodynamics: Theory and Experiment
journal, October 1990


Self-assembly in block polyelectrolytes
journal, February 2011

  • Yang, Shuang; Vishnyakov, Aleksey; Neimark, Alexander V.
  • The Journal of Chemical Physics, Vol. 134, Issue 5
  • DOI: 10.1063/1.3532831

Prediction of polymer densities
journal, May 1969


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Effects of Ion Solvation on the Miscibility of Binary Polymer Blends
journal, December 2008

  • Wang, Zhen-Gang
  • The Journal of Physical Chemistry B, Vol. 112, Issue 50
  • DOI: 10.1021/jp806897t

Effect of Nanoscale Morphology on the Conductivity of Polymerized Ionic Liquid Block Copolymers
journal, July 2011

  • Weber, Ryan L.; Ye, Yuesheng; Schmitt, Andrew L.
  • Macromolecules, Vol. 44, Issue 14
  • DOI: 10.1021/ma201067h

Block Copolymers—Designer Soft Materials
journal, February 1999

  • Bates, Frank S.; Fredrickson, Glenn H.
  • Physics Today, Vol. 52, Issue 2
  • DOI: 10.1063/1.882522

Theory of Solutions of High Polymers 1
journal, July 1942

  • Huggins, Maurice L.
  • Journal of the American Chemical Society, Vol. 64, Issue 7
  • DOI: 10.1021/ja01259a068

Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length, Ionic Content, and Confinement
journal, December 2015


Phase Behavior of Mixtures of Block Copolymers and a Lithium Salt
journal, August 2018

  • Loo, Whitney S.; Galluzzo, Michael D.; Li, Xiuhong
  • The Journal of Physical Chemistry B, Vol. 122, Issue 33
  • DOI: 10.1021/acs.jpcb.8b04189

Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers
journal, June 2013

  • Choi, Jae-Hong; Ye, Yuesheng; Elabd, Yossef A.
  • Macromolecules, Vol. 46, Issue 13
  • DOI: 10.1021/ma400562a

Quantifying Lithium Salt and Polymer Density Distributions in Nanostructured Ion-Conducting Block Polymers
journal, February 2018


Molecular Mobility and Cation Conduction in Polyether–Ester–Sulfonate Copolymer Ionomers
journal, April 2012

  • Tudryn, Gregory J.; O’Reilly, Michael V.; Dou, Shichen
  • Macromolecules, Vol. 45, Issue 9
  • DOI: 10.1021/ma202273j

Thermodynamics of High Polymer Solutions
journal, January 1942

  • Flory, Paul J.
  • The Journal of Chemical Physics, Vol. 10, Issue 1
  • DOI: 10.1063/1.1723621

Thermodynamic and Structural Changes in Ion-Containing Symmetric Diblock Copolymers: A Small-Angle X-ray Scattering Study
journal, December 2011

  • Gunkel, Ilja; Thurn-Albrecht, Thomas
  • Macromolecules, Vol. 45, Issue 1
  • DOI: 10.1021/ma201334h

Microphase separation in polyelectrolytic diblock copolymer melt: Weak segregation limit
journal, June 2007

  • Kumar, Rajeev; Muthukumar, M.
  • The Journal of Chemical Physics, Vol. 126, Issue 21
  • DOI: 10.1063/1.2737049

Single‐Ion Conducting Polymer Electrolytes for Solid‐State Lithium–Metal Batteries: Design, Performance, and Challenges
journal, February 2021

  • Zhu, Jiadeng; Zhang, Zhen; Zhao, Sheng
  • Advanced Energy Materials, Vol. 11, Issue 14
  • DOI: 10.1002/aenm.202003836

Morphology–Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries
journal, May 2014

  • Inceoglu, Sebnem; Rojas, Adriana A.; Devaux, Didier
  • ACS Macro Letters, Vol. 3, Issue 6
  • DOI: 10.1021/mz5001948

Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations
journal, June 2016


Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts
journal, October 2010

  • Wanakule, Nisita S.; Virgili, Justin M.; Teran, Alexander A.
  • Macromolecules, Vol. 43, Issue 19
  • DOI: 10.1021/ma1013786

Phase Behavior of a Block Copolymer/Salt Mixture through the Order-to-Disorder Transition
journal, April 2014

  • Thelen, Jacob L.; Teran, Alexander A.; Wang, Xin
  • Macromolecules, Vol. 47, Issue 8
  • DOI: 10.1021/ma500292n

Impact of Electrostatic Interactions on the Self-Assembly of Charge-Neutral Block Copolyelectrolytes
journal, January 2020


Polyelectrolyte Blends and Nontrivial Behavior in Effective Flory–Huggins Parameters
journal, July 2014

  • Sing, Charles E.; Olvera de la Cruz, Monica
  • ACS Macro Letters, Vol. 3, Issue 8
  • DOI: 10.1021/mz500202n

Organizing thermodynamic data obtained from multicomponent polymer electrolytes: Salt‐containing polymer blends and block copolymers
journal, February 2019

  • Loo, Whitney S.; Balsara, Nitash P.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 57, Issue 18
  • DOI: 10.1002/polb.24800

Self-Assembly of Charge-Containing Copolymers at the Liquid–Liquid Interface
journal, March 2019


First-Order Disordered-to-Lamellar Phase Transition in Lithium Salt-Doped Block Copolymers
journal, May 2013

  • Nakamura, Issei; Balsara, Nitash P.; Wang, Zhen-Gang
  • ACS Macro Letters, Vol. 2, Issue 6
  • DOI: 10.1021/mz4001404

Phase Behavior of Symmetric Sulfonated Block Copolymers
journal, May 2008

  • Park, Moon Jeong; Balsara, Nitash P.
  • Macromolecules, Vol. 41, Issue 10
  • DOI: 10.1021/ma702733f

Superlattice by charged block copolymer self-assembly
journal, May 2019


Segmental Dynamics of Ethylene Oxide-Containing Polymers with Diverse Backbone Chemistries
journal, February 2016


Phase Behavior and Ionic Conductivity of Lithium Perchlorate-Doped Polystyrene- b -poly(2-vinylpyridine) Copolymer
journal, August 2011

  • Naidu, Sudhakar; Ahn, Hyungju; Gong, Jinsam
  • Macromolecules, Vol. 44, Issue 15
  • DOI: 10.1021/ma200429v

Comparing Experimental Phase Behavior of Ion-Doped Block Copolymers with Theoretical Predictions Based on Selective Ion Solvation
journal, May 2020


Electrostatic control of block copolymer morphology
journal, June 2014

  • Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4001

Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions
journal, August 2009

  • Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.
  • Macromolecules, Vol. 42, Issue 15
  • DOI: 10.1021/ma900401a

Thermodynamics of Block Copolymers with and without Salt
journal, December 2013

  • Teran, Alexander A.; Balsara, Nitash P.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 1
  • DOI: 10.1021/jp408079z

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Solvation and Entropic Regimes in Ion-Containing Block Copolymers
journal, September 2018


Morphologies of block copolymers composed of charged and neutral blocks
journal, January 2012

  • Wang, Xiaojun; Goswami, Monojoy; Kumar, Rajeev
  • Soft Matter, Vol. 8, Issue 11
  • DOI: 10.1039/c2sm07223h

A Perspective on the Design of Ion-Containing Polymers for Polymer Electrolyte Applications
journal, February 2021

  • Ma, Boran; Olvera de la Cruz, Monica
  • The Journal of Physical Chemistry B, Vol. 125, Issue 12
  • DOI: 10.1021/acs.jpcb.0c08707

Phase Behavior of Melts of Diblock-Copolymers with One Charged Block
journal, June 2019

  • Gavrilov, Alexey A.; Chertovich, Alexander V.; Potemkin, Igor I.
  • Polymers, Vol. 11, Issue 6
  • DOI: 10.3390/polym11061027