DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21

Abstract

The spectroscopic features of protonated water species in dilute acid solutions have been long sought after for understanding the microscopic behavior of the proton in water with gas-phase water clusters H+(H2O)n extensively studied as bottom-up model systems. We present a new protocol for the calculation of the infrared (IR) spectra of complex systems, which combines the fragment-based Coupled Cluster method and anharmonic vibrational quasi-degenerate perturbation theory, and demonstrate its accuracy towards the complete and accurate assignment of the IR spectrum of the H+(H2O)21 cluster. The site-specific IR spectral signatures reveal two distinct structures for the internal and surface four-coordinated water molecules, which are ice-like and liquid-like, respectively. The effect of inter-molecular interaction between water molecules is addressed, and the vibrational resonance is found between the O-H stretching fundamental and the bending overtone of the nearest neighboring water molecule. The revelation of the spectral signature of the excess proton offers deeper insight into the nature of charge accommodation in the extended hydrogen-bonding network underpinning this aqueous cluster.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]
  1. China Pharmaceutical Univ., Nanjing (China); East China Normal Univ., Shanghai (China). Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
  2. East China Normal Univ., Shanghai (China). Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
  3. Univ. of Nebraska, Lincoln, NE (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Washington, Seattle, WA
  5. RIKEN, Saitama (Japan). Theoretical Molecular Science Laboratory
  6. East China Normal Univ., Shanghai (China). Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; New York Univ. Shanghai (China). New York University-East China Normal University Center for Computational Chemistry
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences; National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; Shanghai Municipal Natural Science Foundation; Fundamental Research Funds for China Pharmaceutical University; JSPS KAKENHI
OSTI Identifier:
1830221
Report Number(s):
PNNL-SA-163212
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC05-76RL01830; AC02-05CH11231; 21703289; 21922301; 21761132022; 21673074; 2016YFA0501700; 2019YFA090402; 2019YFA0905201; 18ZR1412600; 2632019FY01; 20H02701
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Computational chemistry; Quantum chemistry

Citation Formats

Liu, Jinfeng, Yang, Jinrong, Zeng, Xiao Cheng, Xantheas, Sotiris S., Yagi, Kiyoshi, and He, Xiao. Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. United States: N. p., 2021. Web. doi:10.1038/s41467-021-26284-x.
Liu, Jinfeng, Yang, Jinrong, Zeng, Xiao Cheng, Xantheas, Sotiris S., Yagi, Kiyoshi, & He, Xiao. Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. United States. https://doi.org/10.1038/s41467-021-26284-x
Liu, Jinfeng, Yang, Jinrong, Zeng, Xiao Cheng, Xantheas, Sotiris S., Yagi, Kiyoshi, and He, Xiao. Fri . "Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21". United States. https://doi.org/10.1038/s41467-021-26284-x. https://www.osti.gov/servlets/purl/1830221.
@article{osti_1830221,
title = {Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21},
author = {Liu, Jinfeng and Yang, Jinrong and Zeng, Xiao Cheng and Xantheas, Sotiris S. and Yagi, Kiyoshi and He, Xiao},
abstractNote = {The spectroscopic features of protonated water species in dilute acid solutions have been long sought after for understanding the microscopic behavior of the proton in water with gas-phase water clusters H+(H2O)n extensively studied as bottom-up model systems. We present a new protocol for the calculation of the infrared (IR) spectra of complex systems, which combines the fragment-based Coupled Cluster method and anharmonic vibrational quasi-degenerate perturbation theory, and demonstrate its accuracy towards the complete and accurate assignment of the IR spectrum of the H+(H2O)21 cluster. The site-specific IR spectral signatures reveal two distinct structures for the internal and surface four-coordinated water molecules, which are ice-like and liquid-like, respectively. The effect of inter-molecular interaction between water molecules is addressed, and the vibrational resonance is found between the O-H stretching fundamental and the bending overtone of the nearest neighboring water molecule. The revelation of the spectral signature of the excess proton offers deeper insight into the nature of charge accommodation in the extended hydrogen-bonding network underpinning this aqueous cluster.},
doi = {10.1038/s41467-021-26284-x},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Fri Oct 22 00:00:00 EDT 2021},
month = {Fri Oct 22 00:00:00 EDT 2021}
}

Works referenced in this record:

Site-specific vibrational spectral signatures of water molecules in the magic H 3 O + (H 2 O) 20 and Cs + (H 2 O) 20 clusters
journal, December 2014

  • Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 51
  • DOI: 10.1073/pnas.1420734111

Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks
journal, November 2019


Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend
journal, June 2015

  • Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji
  • The Journal of Physical Chemistry B, Vol. 119, Issue 34
  • DOI: 10.1021/acs.jpcb.5b02589

Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in CO2, H2CO, and C6H6
journal, January 2008

  • Yagi, Kiyoshi; Hirata, So; Hirao, Kimihiko
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 13
  • DOI: 10.1039/b719093j

Both Zundel and Eigen Isomers Contribute to the IR Spectrum of the Gas-Phase H 9 O 4 + Cluster
journal, December 2013

  • Kulig, Waldemar; Agmon, Noam
  • The Journal of Physical Chemistry B, Vol. 118, Issue 1
  • DOI: 10.1021/jp410446d

Second-order many-body perturbation study of ice Ih
journal, November 2012

  • He, Xiao; Sode, Olaseni; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 137, Issue 20
  • DOI: 10.1063/1.4767898

Interfacial Structures of Acidic and Basic Aqueous Solutions
journal, October 2008

  • Tian, Chuanshan; Ji, Na; Waychunas, Glenn A.
  • Journal of the American Chemical Society, Vol. 130, Issue 39
  • DOI: 10.1021/ja8021297

Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin
journal, July 2021

  • Yagi, Kiyoshi; Sugita, Yuji
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 8
  • DOI: 10.1021/acs.jctc.1c00060

Deciphering the infrared spectrum of the protonated water pentamer and the hybrid Eigen–Zundel cation
journal, January 2014

  • Kulig, Waldemar; Agmon, Noam
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54029d

Ab initio vibrational state calculations with a quartic force field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6
journal, July 2004

  • Yagi, Kiyoshi; Hirao, Kimihiko; Taketsugu, Tetsuya
  • The Journal of Chemical Physics, Vol. 121, Issue 3
  • DOI: 10.1063/1.1764501

Ultrafast 2D IR spectroscopy of the excess proton in liquid water
journal, October 2015


The nature of the hydrated excess proton in water
journal, February 1999

  • Marx, Dominik; Tuckerman, Mark E.; Hutter, Jürg
  • Nature, Vol. 397, Issue 6720
  • DOI: 10.1038/17579

An analysis of hydrated proton diffusion in ab initio molecular dynamics
journal, January 2015

  • Tse, Ying-Lung Steve; Knight, Chris; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 142, Issue 1
  • DOI: 10.1063/1.4905077

Infrared Spectra and Hydrogen-Bonded Network Structures of Large Protonated Water Clusters H+(H2O)n (n=20-200)
journal, November 2010

  • Mizuse, Kenta; Mikami, Naohiko; Fujii, Asuka
  • Angewandte Chemie International Edition, Vol. 49, Issue 52
  • DOI: 10.1002/anie.201003662

Benchmark Electronic Structure Calculations for H 3 O + (H 2 O) n , n = 0–5, Clusters and Tests of an Existing 1,2,3-Body Potential Energy Surface with a New 4-Body Correction
journal, August 2018

  • Heindel, Joseph P.; Yu, Qi; Bowman, Joel M.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 9
  • DOI: 10.1021/acs.jctc.8b00598

Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans -1,3-butadiene
journal, February 2014

  • Yagi, Kiyoshi; Otaki, Hiroki
  • The Journal of Chemical Physics, Vol. 140, Issue 8
  • DOI: 10.1063/1.4866365

Clustering of water on hydrated protons in a supersonic free jet expansion
journal, December 1974

  • Searcy, J. Q.; Fenn, J. B.
  • The Journal of Chemical Physics, Vol. 61, Issue 12
  • DOI: 10.1063/1.1681876

Energy-Based Molecular Fragmentation Methods
journal, April 2015

  • Collins, Michael A.; Bettens, Ryan P. A.
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500455b

Reinvestigation of the Infrared Spectrum of the Gas-Phase Protonated Water Tetramer
journal, April 2017


Flexible simple point-charge water model with improved liquid-state properties
journal, January 2006

  • Wu, Yujie; Tepper, Harald L.; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 124, Issue 2
  • DOI: 10.1063/1.2136877

Spectral Signatures of Hydrated Proton Vibrations in Water Clusters
journal, June 2005


Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water
journal, August 2008

  • Markovitch, Omer; Chen, Hanning; Izvekov, Sergei
  • The Journal of Physical Chemistry B, Vol. 112, Issue 31
  • DOI: 10.1021/jp804018y

Gas-Phase Infrared Spectrum of the Protonated Water Dimer
journal, February 2003


Probing the Ion-Specific Effects at the Water/Air Interface and Water-Mediated Ion Pairing in Sodium Halide Solution with Ab Initio Molecular Dynamics
journal, October 2018

  • Liu, Jinfeng; Zhang, John Z. H.; He, Xiao
  • The Journal of Physical Chemistry B, Vol. 122, Issue 44
  • DOI: 10.1021/acs.jpcb.8b09513

Delocalization of Protons in Liquid Water
journal, July 2002


The structure and vibrational spectra of proton hydrates: as a simplest stable ion
journal, July 2009

  • Vener, M. V.; Librovich, N. B.
  • International Reviews in Physical Chemistry, Vol. 28, Issue 3
  • DOI: 10.1080/01442350903079955

Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES
journal, January 1964


Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters
journal, November 2006

  • Dahlke, Erin E.; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 1
  • DOI: 10.1021/ct600253j

Proton transfer through the water gossamer
journal, July 2013

  • Hassanali, Ali; Giberti, Federico; Cuny, Jérôme
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 34
  • DOI: 10.1073/pnas.1306642110

Tracking Hydronium/Water Stretches in Magic H 3 O + (H 2 O) 20 Clusters through High-level Quantum VSCF/VCI Calculations
journal, January 2020


Multiresolution potential energy surfaces for vibrational state calculations
journal, July 2007

  • Yagi, Kiyoshi; Hirata, So; Hirao, Kimihiko
  • Theoretical Chemistry Accounts, Vol. 118, Issue 3
  • DOI: 10.1007/s00214-007-0363-x

Global minima of protonated water clusters
journal, July 2000


Permutationally Invariant Potential Energy Surfaces
journal, April 2018


Infrared Spectra of Ices Ih and Ic in the Range 4000 to 350 cm —1
journal, March 1964

  • Bertie, J. E.; Whalley, E.
  • The Journal of Chemical Physics, Vol. 40, Issue 6
  • DOI: 10.1063/1.1725373

Anharmonicity and the Eigen-Zundel Dilemma in the IR Spectrum of the Protonated 21 Water Cluster
journal, December 2010

  • Torrent-Sucarrat, Miquel; Anglada, Josep M.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 2
  • DOI: 10.1021/ct100692x

Direct vibrational self-consistent field method: Applications to H2O and H2CO
journal, July 2000

  • Yagi, Kiyoshi; Taketsugu, Tetsuya; Hirao, Kimihiko
  • The Journal of Chemical Physics, Vol. 113, Issue 3
  • DOI: 10.1063/1.481881

Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids
journal, January 2020

  • Liu, Jinfeng; He, Xiao
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 22
  • DOI: 10.1039/D0CP01095B

Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters
journal, June 2013


Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster
journal, May 2014


On the coupling strength in potential energy surfaces for vibrational calculations
journal, November 2009


High-Level Quantum Calculations of the IR Spectra of the Eigen, Zundel, and Ring Isomers of H + (H 2 O) 4 Find a Single Match to Experiment
journal, August 2017

  • Yu, Qi; Bowman, Joel M.
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b05459

Spying on the neighbors' pool
journal, December 2016


Fragmentation Methods: A Route to Accurate Calculations on Large Systems
journal, August 2011

  • Gordon, Mark S.; Fedorov, Dmitri G.; Pruitt, Spencer R.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200093j

Stability, Vibrations, and Diffusion of Hydrogen Gas in Clathrate Hydrates: Insights from Ab Initio Calculations on Condensed-Phase Crystalline Structures
journal, April 2019

  • Lu, Qiangna; He, Xiao; Hu, Wenxin
  • The Journal of Physical Chemistry C, Vol. 123, Issue 19
  • DOI: 10.1021/acs.jpcc.8b11586

Spectroscopic snapshots of the proton-transfer mechanism in water
journal, December 2016


Infrared Spectrum of the Hydrated Proton in Water
journal, December 2010

  • Xu, Jianqing; Zhang, Yong; Voth, Gregory A.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 2
  • DOI: 10.1021/jz101536b

The properties of ion-water clusters. I. The protonated 21-water cluster
journal, August 2005

  • Iyengar, Srinivasan S.; Petersen, Matt K.; Day, Tyler J. F.
  • The Journal of Chemical Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.2007628

Dances with hydrogen cations
journal, February 2009


Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters
journal, April 2017

  • Liu, Jinfeng; Qi, Lian-Wen; Zhang, John Z. H.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 5
  • DOI: 10.1021/acs.jctc.7b00149

Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
journal, March 2011

  • Wang, Yimin; Huang, Xinchuan; Shepler, Benjamin C.
  • The Journal of Chemical Physics, Vol. 134, Issue 9
  • DOI: 10.1063/1.3554905