DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues

Abstract

Clostridium difficile causes life-threatening diarrhea and is the leading cause of healthcare-associated bacterial infections in the United States. TcdA and TcdB bacterial toxins are primary determinants of disease pathogenesis and are attractive therapeutic targets. TcdA and TcdB contain domains that use UDP-glucose to glucosylate and inactivate host Rho GTPases, resulting in cytoskeletal changes causing cell rounding and loss of intestinal integrity. Transition state analysis revealed glucocationic character for the TcdA and TcdB transition states. We identified transition state analogue inhibitors and characterized them by kinetic, thermodynamic and structural analysis. Iminosugars, isofagomine and noeuromycin mimic the transition state and inhibit both TcdA and TcdB by forming ternary complexes with Tcd and UDP, a product of the TcdA- and TcdB-catalyzed reactions. Both iminosugars prevent TcdA- and TcdB-induced cytotoxicity in cultured mammalian cells by preventing glucosylation of Rho GTPases. Iminosugar transition state analogues of the Tcd toxins show potential as therapeutics for C. difficile pathology.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]
  1. Albert Einstein College of Medicine, Bronx, NY (United States)
  2. Albert Einstein College of Medicine, Bronx, NY (United States); Univ. of Colorado, Boulder, CO (United States)
  3. Victoria Univ. of Wellington, Lower Hutt (New Zealand)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Institutes of Health, National Institute of General Medical Sciences (NIGMS); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1829876
Alternate Identifier(s):
OSTI ID: 1875645
Report Number(s):
BNL-223143-2022-JACI
Journal ID: ISSN 2041-1723; APS_263792
Grant/Contract Number:  
AC02-06CH11357; SC0012704; P30GM133893; GM041916; AI150971; S10 OD020068
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
99 GENERAL AND MISCELLANEOUS; Enzymes; Transferases; X-ray crystallography

Citation Formats

Paparella, Ashleigh S., Aboulache, Briana L., Harijan, Rajesh K., Potts, Kathryn S., Tyler, Peter C., and Schramm, Vern L. Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues. United States: N. p., 2021. Web. doi:10.1038/s41467-021-26580-6.
Paparella, Ashleigh S., Aboulache, Briana L., Harijan, Rajesh K., Potts, Kathryn S., Tyler, Peter C., & Schramm, Vern L. Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues. United States. https://doi.org/10.1038/s41467-021-26580-6
Paparella, Ashleigh S., Aboulache, Briana L., Harijan, Rajesh K., Potts, Kathryn S., Tyler, Peter C., and Schramm, Vern L. Mon . "Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues". United States. https://doi.org/10.1038/s41467-021-26580-6. https://www.osti.gov/servlets/purl/1829876.
@article{osti_1829876,
title = {Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues},
author = {Paparella, Ashleigh S. and Aboulache, Briana L. and Harijan, Rajesh K. and Potts, Kathryn S. and Tyler, Peter C. and Schramm, Vern L.},
abstractNote = {Clostridium difficile causes life-threatening diarrhea and is the leading cause of healthcare-associated bacterial infections in the United States. TcdA and TcdB bacterial toxins are primary determinants of disease pathogenesis and are attractive therapeutic targets. TcdA and TcdB contain domains that use UDP-glucose to glucosylate and inactivate host Rho GTPases, resulting in cytoskeletal changes causing cell rounding and loss of intestinal integrity. Transition state analysis revealed glucocationic character for the TcdA and TcdB transition states. We identified transition state analogue inhibitors and characterized them by kinetic, thermodynamic and structural analysis. Iminosugars, isofagomine and noeuromycin mimic the transition state and inhibit both TcdA and TcdB by forming ternary complexes with Tcd and UDP, a product of the TcdA- and TcdB-catalyzed reactions. Both iminosugars prevent TcdA- and TcdB-induced cytotoxicity in cultured mammalian cells by preventing glucosylation of Rho GTPases. Iminosugar transition state analogues of the Tcd toxins show potential as therapeutics for C. difficile pathology.},
doi = {10.1038/s41467-021-26580-6},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Mon Nov 01 00:00:00 EDT 2021},
month = {Mon Nov 01 00:00:00 EDT 2021}
}

Works referenced in this record:

Glucosylation of Rho proteins by Clostridium difficile toxin B
journal, June 1995

  • Just, I.; Selzer, J.; Wilm, M.
  • Nature, Vol. 375, Issue 6531
  • DOI: 10.1038/375500a0

Clostridium difficile Toxin Biology
journal, September 2017


Refinement of Macromolecular Structures by the Maximum-Likelihood Method
journal, May 1997

  • Murshudov, G. N.; Vagin, A. A.; Dodson, E. J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 53, Issue 3
  • DOI: 10.1107/S0907444996012255

Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase
journal, August 2011

  • Lee, Seung Seo; Hong, Sung You; Errey, James C.
  • Nature Chemical Biology, Vol. 7, Issue 9
  • DOI: 10.1038/nchembio.628

Difference in the biological effects of Clostridium difficile toxin B in proliferating and non-proliferating cells
journal, January 2011

  • Lica, Marta; Schulz, Florian; Schelle, Ilona
  • Naunyn-Schmiedeberg's Archives of Pharmacology, Vol. 383, Issue 3
  • DOI: 10.1007/s00210-010-0595-5

Clostridium difficile Glucosyltransferase Toxin B-essential Amino Acids for Substrate Binding
journal, September 2007

  • Jank, Thomas; Giesemann, Torsten; Aktories, Klaus
  • Journal of Biological Chemistry, Vol. 282, Issue 48
  • DOI: 10.1074/jbc.M703138200

Bacterial protein toxins that modify host regulatory GTPases
journal, June 2011


A small-molecule antivirulence agent for treating Clostridium difficile infection
journal, September 2015

  • Bender, Kristina Oresic; Garland, Megan; Ferreyra, Jessica A.
  • Science Translational Medicine, Vol. 7, Issue 306
  • DOI: 10.1126/scitranslmed.aac9103

Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing
journal, July 2017

  • Peng, Zhong; Jin, Dazhi; Kim, Hyeun Bum
  • Journal of Clinical Microbiology, Vol. 55, Issue 7
  • DOI: 10.1128/JCM.02250-16

The role of toxin A and toxin B in Clostridium difficile infection
journal, September 2010

  • Kuehne, Sarah A.; Cartman, Stephen T.; Heap, John T.
  • Nature, Vol. 467, Issue 7316
  • DOI: 10.1038/nature09397

Complete kinetic isotope effect description of transition states for acid-catalyzed hydrolyses of methyl .alpha.- and .beta.-glucopyranosides
journal, November 1986

  • Bennet, Andrew J.; Sinnott, Michael L.
  • Journal of the American Chemical Society, Vol. 108, Issue 23
  • DOI: 10.1021/ja00283a025

Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue
journal, June 2017


Structural Basis for the Function of Clostridium difficile Toxin B
journal, September 2005

  • Reinert, Dirk J.; Jank, Thomas; Aktories, Klaus
  • Journal of Molecular Biology, Vol. 351, Issue 5
  • DOI: 10.1016/j.jmb.2005.06.071

Bisubstrate Analogues as Glycosyltransferase Inhibitors
journal, January 2009

  • Izumi, Masayuki; Yuasa, Hideya; Hashimoto, Hironobu
  • Current Topics in Medicinal Chemistry, Vol. 9, Issue 1
  • DOI: 10.2174/156802609787354351

Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota
journal, December 2018


Clostridium difficile infection: Toxins and non-toxin virulence factors, and their contributions to disease establishment and host response
journal, March 2012

  • Vedantam, Gayatri; Clark, Andrew; Chu, Michele
  • Gut Microbes, Vol. 3, Issue 2
  • DOI: 10.4161/gmic.19399

Glycosidase inhibition: assessing mimicry of the transition state
journal, January 2010

  • Gloster, Tracey M.; Davies, Gideon J.
  • Org. Biomol. Chem., Vol. 8, Issue 2
  • DOI: 10.1039/B915870G

Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin
journal, February 2002

  • Lillelund, Vinni H.; Jensen, Henrik H.; Liang, Xifu
  • Chemical Reviews, Vol. 102, Issue 2
  • DOI: 10.1021/cr000433k

Burden of Clostridium difficile on the Healthcare System
journal, August 2012

  • Dubberke, Erik R.; Olsen, Margaret A.
  • Clinical Infectious Diseases, Vol. 55, Issue suppl_2
  • DOI: 10.1093/cid/cis335

Clostridium difficile Toxins A and B Are Cation-dependent UDP-glucose Hydrolases with Differing Catalytic Activities
journal, June 1998


Isofagomine In Vivo Effects in a Neuronopathic Gaucher Disease Mouse
journal, April 2011


The CCP4 suite programs for protein crystallography
journal, September 1994


Virulence of new variant strains of Clostridium difficile producing only toxin A or binary toxin in the hamster model
journal, November 2019


The role of toxin A and toxin B in Clostridium difficile-associated disease: Past and present perspectives
journal, January 2010


Inhibition of the glucosyltransferase activity of clostridial Rho/Ras-glucosylating toxins by castanospermine
journal, May 2008


Enzymatic Transition States and Transition State Analog Design
journal, June 1998


Differential Effects of Clostridium difficile Toxins on Tissue-Cultured Cells
journal, June 1982


Clostridium difficile Infection
journal, April 2015

  • Leffler, Daniel A.; Lamont, J. Thomas
  • New England Journal of Medicine, Vol. 372, Issue 16
  • DOI: 10.1056/NEJMra1403772

Synthesis and SAR studies of novel benzodiazepinedione-based inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB)
journal, December 2018

  • Letourneau, Jeffrey J.; Stroke, Ilana L.; Hilbert, David W.
  • Bioorganic & Medicinal Chemistry Letters, Vol. 28, Issue 23-24
  • DOI: 10.1016/j.bmcl.2018.10.047

Toxin B is essential for virulence of Clostridium difficile
journal, March 2009

  • Lyras, Dena; O’Connor, Jennifer R.; Howarth, Pauline M.
  • Nature, Vol. 458, Issue 7242
  • DOI: 10.1038/nature07822

iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM
journal, March 2011

  • Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910048675

Bezlotoxumab: First Global Approval
journal, November 2016


The Expression of Isotope Effects on Enzyme-Catalyzed Reactions
journal, June 1981


Hyperconjugation and the angular dependence of .beta.-deuterium isotope effects
journal, June 1977

  • Sunko, D. E.; Szele, Ivanka; Hehre, Warren J.
  • Journal of the American Chemical Society, Vol. 99, Issue 15
  • DOI: 10.1021/ja00457a018

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity
journal, January 2012

  • Pruitt, Rory N.; Chumbler, Nicole M.; Rutherford, Stacey A.
  • Journal of Biological Chemistry, Vol. 287, Issue 11
  • DOI: 10.1074/jbc.M111.298414

Small Molecule Inhibitors of Clostridium difficile Toxin B-Induced Cellular Damage
journal, February 2015


A Kinetic Isotope Effect Study on the Hydrolysis Reactions of Methyl Xylopyranosides and Methyl 5-Thioxylopyranosides:  Oxygen versus Sulfur Stabilization of Carbenium Ions
journal, October 2001

  • Indurugalla, Deepani; Bennet, Andrew J.
  • Journal of the American Chemical Society, Vol. 123, Issue 44
  • DOI: 10.1021/ja011232g

Catalytic mechanism of enzymic glycosyl transfer
journal, November 1990


Rho protein inactivation induced apoptosis of cultured human endothelial cells
journal, October 2002

  • Hippenstiel, Stefan; Schmeck, Bernd; N'Guessan, Phillipe Dje
  • American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 283, Issue 4
  • DOI: 10.1152/ajplung.00467.2001

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Assay of proteins in the presence of interfering materials
journal, January 1976


Clostridium difficile Toxins: Mechanism of Action and Role in Disease
journal, April 2005


Isofagomine Induced Stabilization of Glucocerebrosidase
journal, November 2008

  • Kornhaber, Gregory J.; Tropak, Michael B.; Maegawa, Gustavo H.
  • ChemBioChem, Vol. 9, Issue 16
  • DOI: 10.1002/cbic.200800249

Glycosyltransferases: Structures, Functions, and Mechanisms
journal, June 2008


The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
journal, March 1995

  • Just, I.; Selzer, J.; von Eichel-Streiber, C.
  • Journal of Clinical Investigation, Vol. 95, Issue 3
  • DOI: 10.1172/JCI117747

Current State of Clostridium difficile Treatment Options
journal, July 2012

  • Venugopal, A. A.; Johnson, S.
  • Clinical Infectious Diseases, Vol. 55, Issue suppl 2
  • DOI: 10.1093/cid/cis355

Mechanistic insights into glycosidase chemistry
journal, October 2008


Structure of the full-length Clostridium difficile toxin B
journal, July 2019

  • Chen, Peng; Lam, Kwok-ho; Liu, Zheng
  • Nature Structural & Molecular Biology, Vol. 26, Issue 8
  • DOI: 10.1038/s41594-019-0268-0

Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells.
journal, October 1997

  • Chaves-Olarte, E.; Weidmann, M.; Eichel-Streiber, C.
  • Journal of Clinical Investigation, Vol. 100, Issue 7
  • DOI: 10.1172/JCI119698

Guidelines for Diagnosis, Treatment, and Prevention of Clostridium difficile Infections
journal, January 2013

  • Surawicz, Christina M.; Brandt, Lawrence J.; Binion, David G.
  • American Journal of Gastroenterology, Vol. 108, Issue 4
  • DOI: 10.1038/ajg.2013.4

Importance of Toxin A, Toxin B, and CDT in Virulence of an Epidemic Clostridium difficile Strain
journal, August 2013

  • Kuehne, Sarah A.; Collery, Mark M.; Kelly, Michelle L.
  • The Journal of Infectious Diseases, Vol. 209, Issue 1
  • DOI: 10.1093/infdis/jit426

Enzymatic Transition States and Drug Design
journal, October 2018


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206