DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zeolitic-Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO2 to CO Reduction at High Pressure

Abstract

Abstract The conversion of CO 2 into CO is an important step in CO 2 utilization to achieve clean fuels and value‐added chemicals. Herein, we explored the pyrolysis of zeolitic imidazolate framework‐8 (ZIF‐8) loaded with different amounts of Ni 2+ to obtain Ni−Zn carbide (Ni 3 ZnC) embedded in N‐doped carbon. Ni is present in the intermetallic compound, while Zn excess remains on the N‐doped carbon. The Ni 3 ZnC phase catalyzes the selective hydrogenation of CO 2 into CO via the reverse water gas shift reaction, reaching 100 % CO selectivity at ∼30 % CO 2 conversion at 450 °C and atmosphere pressure (CO 2  : H 2 =1 : 4, GHSV=30000 mL g cat −1  h −1 ). The methanation reaction of CO 2 /CO, which is usually favored over Ni catalysts, is suppressed. The selectivity to CO at the expense of CH 4 is related to the stability of chemisorbed CO in the Ni 3 ZnC surface, which is lower compared to Ni surfaces. The Ni 3 ZnC@NC catalyst is selective towards CO over a wide range of conditions, including high pressure, that is usually required for the conversion of CO to hydrocarbons and alcohols via the Fisher‐Tropsch synthesis (FTS) process. Contrarily, a classical Ni/SiOmore » 2 catalyst prepared by impregnation produces CH 4 under high pressure.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. University of Sao Paulo (Brazil)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; Sao Paulo Research Foundation; CNPq; USDOE
OSTI Identifier:
1829501
Alternate Identifier(s):
OSTI ID: 1832262
Report Number(s):
PNNL-SA-163626
Journal ID: ISSN 1434-1948
Grant/Contract Number:  
AC05-76RL01830; 2014/50279-4; 142339/2016-4; 306024/2019-5; 465454/2014-3; 444061/2018-5
Resource Type:
Accepted Manuscript
Journal Name:
European Journal of Inorganic Chemistry
Additional Journal Information:
Journal Volume: 2021; Journal Issue: 44; Journal ID: ISSN 1434-1948
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Carbon dioxide hydrogenation, Carbides, Intermetallic phases, Zeolitic imidazolate frameworks

Citation Formats

Maluf, Nágila C., Braga, Adriano H., Gothe, Maitê L., Borges, Laís R., Alves, Gustavo S., Gonçalves, Renato V., Szanyi, János, Vidinha, Pedro, and Rossi, Liane M. Zeolitic-Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO2 to CO Reduction at High Pressure. United States: N. p., 2021. Web. doi:10.1002/ejic.202100530.
Maluf, Nágila C., Braga, Adriano H., Gothe, Maitê L., Borges, Laís R., Alves, Gustavo S., Gonçalves, Renato V., Szanyi, János, Vidinha, Pedro, & Rossi, Liane M. Zeolitic-Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO2 to CO Reduction at High Pressure. United States. https://doi.org/10.1002/ejic.202100530
Maluf, Nágila C., Braga, Adriano H., Gothe, Maitê L., Borges, Laís R., Alves, Gustavo S., Gonçalves, Renato V., Szanyi, János, Vidinha, Pedro, and Rossi, Liane M. Sun . "Zeolitic-Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO2 to CO Reduction at High Pressure". United States. https://doi.org/10.1002/ejic.202100530. https://www.osti.gov/servlets/purl/1829501.
@article{osti_1829501,
title = {Zeolitic-Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO2 to CO Reduction at High Pressure},
author = {Maluf, Nágila C. and Braga, Adriano H. and Gothe, Maitê L. and Borges, Laís R. and Alves, Gustavo S. and Gonçalves, Renato V. and Szanyi, János and Vidinha, Pedro and Rossi, Liane M.},
abstractNote = {Abstract The conversion of CO 2 into CO is an important step in CO 2 utilization to achieve clean fuels and value‐added chemicals. Herein, we explored the pyrolysis of zeolitic imidazolate framework‐8 (ZIF‐8) loaded with different amounts of Ni 2+ to obtain Ni−Zn carbide (Ni 3 ZnC) embedded in N‐doped carbon. Ni is present in the intermetallic compound, while Zn excess remains on the N‐doped carbon. The Ni 3 ZnC phase catalyzes the selective hydrogenation of CO 2 into CO via the reverse water gas shift reaction, reaching 100 % CO selectivity at ∼30 % CO 2 conversion at 450 °C and atmosphere pressure (CO 2  : H 2 =1 : 4, GHSV=30000 mL g cat −1  h −1 ). The methanation reaction of CO 2 /CO, which is usually favored over Ni catalysts, is suppressed. The selectivity to CO at the expense of CH 4 is related to the stability of chemisorbed CO in the Ni 3 ZnC surface, which is lower compared to Ni surfaces. The Ni 3 ZnC@NC catalyst is selective towards CO over a wide range of conditions, including high pressure, that is usually required for the conversion of CO to hydrocarbons and alcohols via the Fisher‐Tropsch synthesis (FTS) process. Contrarily, a classical Ni/SiO 2 catalyst prepared by impregnation produces CH 4 under high pressure.},
doi = {10.1002/ejic.202100530},
journal = {European Journal of Inorganic Chemistry},
number = 44,
volume = 2021,
place = {United States},
year = {Sun Aug 29 00:00:00 EDT 2021},
month = {Sun Aug 29 00:00:00 EDT 2021}
}

Works referenced in this record:

Selective CO2 hydrogenation into methanol in a supercritical flow process
journal, September 2020

  • Gothe, Maitê L.; Pérez-Sanz, Fernando J.; Braga, Adriano H.
  • Journal of CO2 Utilization, Vol. 40
  • DOI: 10.1016/j.jcou.2020.101195

Isolated Metal Active Site Concentration and Stability Control Catalytic CO 2 Reduction Selectivity
journal, February 2015

  • Matsubu, John C.; Yang, Vanessa N.; Christopher, Phillip
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/ja5128133

Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling
journal, April 2018

  • Hobday, Claire L.; Woodall, Christopher H.; Lennox, Matthew J.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03878-6

Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO 2 Enrichment and Selective Hydrogenation
journal, February 2018


Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis
journal, September 2019

  • Nelson, Nicholas C.; Nguyen, Manh-Thuong; Glezakou, Vassiliki-Alexandra
  • Nature Catalysis, Vol. 2, Issue 10
  • DOI: 10.1038/s41929-019-0343-2

Reverse Water–Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure
journal, March 2016

  • Roiaz, Matteo; Monachino, Enrico; Dri, Carlo
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.5b13366

Nano-Intermetallic InNi3C0.5 Compound Discovered as a Superior Catalyst for CO2 Reutilization
journal, July 2019


Hydrogenation of carbon dioxide: From waste to value
journal, December 2020

  • Braga, Adriano H.; Vidinha, Pedro; Rossi, Liane M.
  • Current Opinion in Green and Sustainable Chemistry, Vol. 26
  • DOI: 10.1016/j.cogsc.2020.100386

Methanation of CO 2 and reverse water gas shift reactions on Ni/SiO 2 catalysts: the influence of particle size on selectivity and reaction pathway
journal, January 2015

  • Wu, H. C.; Chang, Y. C.; Wu, J. H.
  • Catalysis Science & Technology, Vol. 5, Issue 8
  • DOI: 10.1039/C5CY00667H

Unravelling structure sensitivity in CO2 hydrogenation over nickel
journal, January 2018


Tuning Selectivity of CO 2 Hydrogenation Reactions at the Metal/Oxide Interface
journal, July 2017

  • Kattel, Shyam; Liu, Ping; Chen, Jingguang G.
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b05362

Effect of Copper-based Catalyst Support on Reverse Water-Gas Shift Reaction (RWGS) Activity for CO 2 Reduction
journal, March 2017

  • Jurković, Damjan Lašič; Pohar, Andrej; Dasireddy, Venkata D. B. C.
  • Chemical Engineering & Technology, Vol. 40, Issue 5
  • DOI: 10.1002/ceat.201600594

Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario
journal, May 2016


Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application
journal, January 2020

  • Yang, Yusen; Wei, Min
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/C9TA09448B

Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy
journal, March 2010


Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors
journal, August 2007

  • Cable, Robert E.; Schaak, Raymond E.
  • Chemistry of Materials, Vol. 19, Issue 16
  • DOI: 10.1021/cm071214j

XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups
journal, May 1991

  • López, Gabriel P.; Castner, David G.; Ratner, Buddy D.
  • Surface and Interface Analysis, Vol. 17, Issue 5
  • DOI: 10.1002/sia.740170508

The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO 2 Emissions Chemical Industry
journal, March 2020

  • Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco
  • Industrial & Engineering Chemistry Research, Vol. 59, Issue 15
  • DOI: 10.1021/acs.iecr.9b06579

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity
journal, November 2013


Mechanistic Insights into CO 2 Activation via Reverse Water–Gas Shift on Metal Surfaces
journal, February 2015

  • Dietz, Luca; Piccinin, Simone; Maestri, Matteo
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp512962c

Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO 2 Utilization
journal, November 2020


Zeolitic imidazolate framework materials: recent progress in synthesis and applications
journal, January 2014

  • Chen, Binling; Yang, Zhuxian; Zhu, Yanqiu
  • Journal of Materials Chemistry A, Vol. 2, Issue 40, p. 16811-16831
  • DOI: 10.1039/C4TA02984D

Using carbon dioxide as a building block in organic synthesis
journal, January 2015

  • Liu, Qiang; Wu, Lipeng; Jackstell, Ralf
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6933

Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs
journal, November 2019


X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films
journal, May 2000


Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie, Vol. 128, Issue 26
  • DOI: 10.1002/ange.201507458

Pd/ZnO catalysts for direct CO2 hydrogenation to methanol
journal, November 2016


Optimizing Active Sites for High CO Selectivity during CO 2 Hydrogenation over Supported Nickel Catalysts
journal, March 2021

  • Galhardo, Thalita S.; Braga, Adriano H.; Arpini, Bruno H.
  • Journal of the American Chemical Society, Vol. 143, Issue 11
  • DOI: 10.1021/jacs.0c12689

A Surface Science Investigation of Methanol Synthesis over a Zn-Deposited Polycrystalline Cu Surface
journal, April 1996

  • Nakamura, J.; Nakamura, I.; Uchijima, T.
  • Journal of Catalysis, Vol. 160, Issue 1
  • DOI: 10.1006/jcat.1996.0124

Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study
journal, January 2018

  • Linder-Patton, Oliver M.; de Prinse, Thomas J.; Furukawa, Shuhei
  • CrystEngComm, Vol. 20, Issue 34
  • DOI: 10.1039/C8CE00746B

Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions
journal, August 2019


Methanation of CO over Nickel:  Mechanism and Kinetics at High H 2 /CO Ratios
journal, February 2005

  • Sehested, Jens; Dahl, Søren; Jacobsen, Joachim
  • The Journal of Physical Chemistry B, Vol. 109, Issue 6
  • DOI: 10.1021/jp040239s

Accessing Frustrated Lewis Pair Chemistry through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes
journal, March 2018

  • Fiorio, Jhonatan Luiz; Gonçalves, Renato Vitalino; Teixeira-Neto, Erico
  • ACS Catalysis, Vol. 8, Issue 4
  • DOI: 10.1021/acscatal.8b00806

Selective hydrogenation of CO 2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: A step towards liquid fuels
journal, July 2017

  • Gonçalves, Renato V.; Vono, Lucas L. R.; Wojcieszak, Robert
  • Applied Catalysis B: Environmental, Vol. 209
  • DOI: 10.1016/j.apcatb.2017.02.081

The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa
journal, September 2009

  • Moggach, Stephen A.; Bennett, Thomas D.; Cheetham, Anthony K.
  • Angewandte Chemie, Vol. 121, Issue 38
  • DOI: 10.1002/ange.200902643

Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons
journal, May 2018


Ternary carbides of the transition metals nickel, cobalt, iron, manganese with zinc and tin
journal, June 1959


Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201507458

N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells
journal, July 2019


Variations of interlayer spacing in carbon nanotubes
journal, January 2014

  • Kharissova, Oxana V.; Kharisov, Boris I.
  • RSC Adv., Vol. 4, Issue 58
  • DOI: 10.1039/C4RA04201H

Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO 2
journal, January 2020

  • Das, Sonali; Pérez-Ramírez, Javier; Gong, Jinlong
  • Chemical Society Reviews, Vol. 49, Issue 10
  • DOI: 10.1039/C9CS00713J

Remeasurement of the structure of hexagonal ZnO
journal, July 1969

  • Abrahams, S. C.; Bernstein, J. L.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 25, Issue 7
  • DOI: 10.1107/S0567740869003876

The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa
journal, September 2009

  • Moggach, Stephen A.; Bennett, Thomas D.; Cheetham, Anthony K.
  • Angewandte Chemie International Edition, Vol. 48, Issue 38
  • DOI: 10.1002/anie.200902643

Nitrogen-doped nanocarbons (NNCs): Current status and future opportunities
journal, February 2019

  • Shaik, Shajeeya Amren; Goswami, Anandarup; Varma, Rajender S.
  • Current Opinion in Green and Sustainable Chemistry, Vol. 15
  • DOI: 10.1016/j.cogsc.2018.10.001

Structure and activity of supported bimetallic NiPd nanoparticles: influence of preparation method on CO 2 reduction
journal, April 2020

  • Braga, Adriano H.; Costa, Natália J. S.; Philippot, Karine
  • ChemCatChem, Vol. 12, Issue 11
  • DOI: 10.1002/cctc.201902329

Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis
journal, April 2009

  • van Vliet, Oscar P. R.; Faaij, André P. C.; Turkenburg, Wim C.
  • Energy Conversion and Management, Vol. 50, Issue 4
  • DOI: 10.1016/j.enconman.2009.01.008

Controlling selectivities in CO2 reduction through mechanistic understanding
journal, September 2017


Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support
journal, October 2015


Catalyst Screening and Kinetic Modeling for CO Production by High Pressure and Temperature Reverse Water Gas Shift for Fischer–Tropsch Applications
journal, July 2017

  • Vidal Vázquez, Francisco; Pfeifer, Peter; Lehtonen, Juha
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 45
  • DOI: 10.1021/acs.iecr.7b01606

Catalysis mechanisms of CO 2 and CO methanation
journal, January 2016

  • Miao, Bin; Ma, Su Su Khine; Wang, Xin
  • Catalysis Science & Technology, Vol. 6, Issue 12
  • DOI: 10.1039/C6CY00478D

Mechanism of CO 2 Hydrogenation on Pd/Al 2 O 3 Catalysts: Kinetics and Transient DRIFTS-MS Studies
journal, September 2015


Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles
journal, June 2015