DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma

Abstract

Creating a magnetized relativistic pair plasma in the laboratory would enable the exploration of unique plasma physics relevant to some of the most energetic events in the universe. As a step toward a laboratory pair plasma, here we have demonstrated an effective confinement of multi- MeV electrons inside a pulsed-power-driven 13 T magnetic mirror field with a mirror ratio of 2.6. The confinement is diagnosed by measuring the axial and radial losses with magnetic spectrometers. The loss spectra are consistent with 2.5 MeV electrons confined in the mirror for ~ 1 ns . With a source of 1012 electron-positron pairs at comparable energies, this magnetic mirror would confine a relativistic pair plasma with Lorentz factor γ ~ 6 and magnetization σ ~ 40 .

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [2];  [4]; ORCiD logo [3]; ORCiD logo [4]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Max Planck Institute for Plasma Physics, Greifswald (Germany)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF)
OSTI Identifier:
1826473
Alternate Identifier(s):
OSTI ID: 1827236
Report Number(s):
LLNL-JRNL-822631
Journal ID: ISSN 1070-664X; 1034558; TRN: US2215894
Grant/Contract Number:  
AC52-07NA27344; 1751462; 20-LW-021
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 28; Journal Issue: 9; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

von der Linden, J., Fiksel, G., Peebles, J., Edwards, M. R., Willingale, L., Link, A., Mastrosimone, D., and Chen, Hui. Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma. United States: N. p., 2021. Web. doi:10.1063/5.0057582.
von der Linden, J., Fiksel, G., Peebles, J., Edwards, M. R., Willingale, L., Link, A., Mastrosimone, D., & Chen, Hui. Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma. United States. https://doi.org/10.1063/5.0057582
von der Linden, J., Fiksel, G., Peebles, J., Edwards, M. R., Willingale, L., Link, A., Mastrosimone, D., and Chen, Hui. Tue . "Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma". United States. https://doi.org/10.1063/5.0057582. https://www.osti.gov/servlets/purl/1826473.
@article{osti_1826473,
title = {Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma},
author = {von der Linden, J. and Fiksel, G. and Peebles, J. and Edwards, M. R. and Willingale, L. and Link, A. and Mastrosimone, D. and Chen, Hui},
abstractNote = {Creating a magnetized relativistic pair plasma in the laboratory would enable the exploration of unique plasma physics relevant to some of the most energetic events in the universe. As a step toward a laboratory pair plasma, here we have demonstrated an effective confinement of multi-MeV electrons inside a pulsed-power-driven 13 T magnetic mirror field with a mirror ratio of 2.6. The confinement is diagnosed by measuring the axial and radial losses with magnetic spectrometers. The loss spectra are consistent with ≤2.5 MeV electrons confined in the mirror for ~1 ns. With a source of 1012 electron-positron pairs at comparable energies, this magnetic mirror would confine a relativistic pair plasma with Lorentz factor γ~6 and magnetization σ~40.},
doi = {10.1063/5.0057582},
journal = {Physics of Plasmas},
number = 9,
volume = 28,
place = {United States},
year = {Tue Sep 14 00:00:00 EDT 2021},
month = {Tue Sep 14 00:00:00 EDT 2021}
}

Works referenced in this record:

Target material dependence of positron generation from high intensity laser-matter interactions
journal, December 2016

  • Williams, G. J.; Barnak, D.; Fiksel, G.
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4971235

Reconnection in a Striped Pulsar Wind
journal, January 2001

  • Lyubarsky, Y.; Kirk, J. G.
  • The Astrophysical Journal, Vol. 547, Issue 1
  • DOI: 10.1086/318354

High-Energy Electron Confinement in a Magnetic Cusp Configuration
journal, June 2015


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions
journal, March 2021

  • von der Linden, Jens; Ramos-Méndez, José; Faddegon, Bruce
  • Review of Scientific Instruments, Vol. 92, Issue 3
  • DOI: 10.1063/5.0040624

Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
journal, December 2015

  • Bromberg, Omer; Tchekhovskoy, Alexander
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 2
  • DOI: 10.1093/mnras/stv2591

High e+/e− Ratio Dense Pair Creation with 1021W.cm−2 Laser Irradiating Solid Targets
journal, September 2015

  • Liang, E.; Clarke, T.; Henderson, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13968

Particle acceleration in relativistic laser channels
journal, July 1999

  • Pukhov, A.; Sheng, Z. -M.; Meyer-ter-Vehn, J.
  • Physics of Plasmas, Vol. 6, Issue 7
  • DOI: 10.1063/1.873242

A new frontier in laboratory physics: magnetized electron–positron plasmas
journal, November 2020

  • Stoneking, M. R.; Pedersen, T. Sunn; Helander, P.
  • Journal of Plasma Physics, Vol. 86, Issue 6
  • DOI: 10.1017/S0022377820001385

A field theory approach to the evolution of canonical helicity and energy
journal, July 2016


The NEPOMUC upgrade and advanced positron beam experiments
journal, May 2012


Absolute calibration of image plates for electrons at energy between 100keV and 4MeV
journal, March 2008

  • Chen, Hui; Back, Norman L.; Bartal, Teresa
  • Review of Scientific Instruments, Vol. 79, Issue 3
  • DOI: 10.1063/1.2885045

Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers
journal, March 2012


Adiabatic charged-particle motion
journal, January 1963


Accumulation of LINAC based low energy positrons in a buffer gas trap
journal, May 2020

  • Higaki, Hiroyuki; Michishio, Koji; Hashidate, Kaori
  • Applied Physics Express, Vol. 13, Issue 6
  • DOI: 10.35848/1882-0786/ab939f

Measurements of the Canonical Helicity of a Gyrating Kink
journal, July 2018


Magnetic reconnection: flares and coronal heating in active galactic nuclei
journal, August 1998


High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions
journal, October 2008

  • Chen, Hui; Link, Anthony J.; van Maren, Roger
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2953679

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Debye length and plasma skin depth: two length scales of interest in the creation and diagnosis of laboratory pair plasmas
journal, February 2017

  • Stenson, E. V.; Horn-Stanja, J.; Stoneking, M. R.
  • Journal of Plasma Physics, Vol. 83, Issue 1
  • DOI: 10.1017/S0022377817000022

Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications
journal, May 2015


Simultaneous confinement of low-energy electrons and positrons in a compact magnetic mirror trap
journal, February 2017


A family of embedded Runge-Kutta formulae
journal, March 1980


Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions
journal, July 2010


The scaling of electron and positron generation in intense laser-solid interactionsa)
journal, May 2015

  • Chen, Hui; Link, A.; Sentoku, Y.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921147

Exploring the nature of collisionless shocks under laboratory conditions
journal, February 2014

  • Stockem, A.; Fiuza, F.; Bret, A.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03934

Hierarchy of instabilities for two counter-streaming magnetized pair beams
journal, June 2016


Confinement of Positrons Exceeding 1 s in a Supported Magnetic Dipole Trap
journal, December 2018


Weibel instability in relativistically hot magnetized electron–positron plasmas
journal, September 1993

  • Yang, T. ‐Y. Brian; Gallant, Yves; Arons, Jonathan
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860631

Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers
journal, July 2021

  • Peebles, J. L.; Fiksel, G.; Edwards, M. R.
  • Physics of Plasmas, Vol. 28, Issue 7
  • DOI: 10.1063/5.0053557

Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments
journal, August 2019


Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields
journal, May 2017

  • Higuera, A. V.; Cary, J. R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979989

Calibration of imaging plate for high energy electron spectrometer
journal, January 2005

  • Tanaka, Kazuo A.; Yabuuchi, Toshinori; Sato, Takashi
  • Review of Scientific Instruments, Vol. 76, Issue 1
  • DOI: 10.1063/1.1824371

Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme
journal, October 2016


Absorption of ultra-intense laser pulses
journal, August 1992


Laser–plasma interactions for fast ignition
journal, April 2014


Generation of neutral and high-density electron–positron pair plasmas in the laboratory
journal, April 2015

  • Sarri, G.; Poder, K.; Cole, J. M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7747

Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil
journal, March 2018

  • Barnak, D. H.; Davies, J. R.; Fiksel, G.
  • Review of Scientific Instruments, Vol. 89, Issue 3
  • DOI: 10.1063/1.5012531

Inductively coupled 30 T magnetic field platform for magnetized high-energy-density plasma studies
journal, August 2018

  • Fiksel, G.; Backhus, R.; Barnak, D. H.
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5040756

Theory of the formation of a collisionless Weibel shock: pair vs. electron/proton plasmas
journal, April 2016


The Topology of Canonical flux Tubes in Flared jet Geometry
journal, January 2017


On the relativistic magnetic reconnection
journal, March 2005


High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions
journal, April 2014

  • Chen, Hui; Fiksel, G.; Barnak, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4873711

Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities
journal, April 2013

  • Bret, A.; Stockem, A.; Fiuza, F.
  • Physics of Plasmas, Vol. 20, Issue 4
  • DOI: 10.1063/1.4798541