DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Boundary zonal flows in rapidly rotating turbulent thermal convection

Abstract

Recently, in Zhang et al. (Phys. Rev. Lett., vol. 124, 2020, 084505), it was found that, in rapidly rotating turbulent Rayleigh–Bénard convection in slender cylindrical containers (with diameter-to-height aspect ratio $$\varGamma =1/2$$) filled with a small-Prandtl-number fluid ($${Pr}\approx 0.8$$), the large-scale circulation is suppressed and a boundary zonal flow (BZF) develops near the sidewall, characterized by a bimodal probability density function of the temperature, cyclonic fluid motion and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($${>}60\,\%$$) of the total heat transport for $${Pr} < 1$$, but decreases rather abruptly for larger $${Pr}$$ to approximately $$35\,\%$$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent Rayleigh–Bénard convection in containers of different $$\varGamma$$ and over a broad range of $${Pr}$$ and $${Ra}$$. Furthermore, tirect numerical simulations for Prandtl number $$0.1 \leq {\textit {Pr}} \leq 12.3$$, Rayleigh number $$10^7 \leq {Ra} \leq 5\times 10^{9}$$, inverse Ekman number $$10^{5} \leq 1/{\textit {Ek}} \leq 10^{7}$$ and $$\varGamma = 1/3$$, 1/2, 3/4, 1 and 2 show that the BZF width $$\delta _0$$ scales with the Rayleigh number $${Ra}$$ and Ekman number $${\textit {Ek}}$$ as $$\delta _0/H \sim \varGamma ^{0} Pr^{\{-1/4, 0\}} {Ra}^{1/4} {\textit {Ek}}^{2/3}$$ ($$\{{\textit {Pr}}<1, {\textit {Pr}}>1\}$$) and with the drift frequency scales as $$\omega /\varOmega \sim \varGamma ^{0} Pr^{-4/3} {Ra}\,{\textit {Ek}}^{5/3}$$, where $$H$$ is the cell height and $$\varOmega$$ the angular rotation rate. The mode number of the BZF is 1 for $$\varGamma \lesssim 1$$ and $$2 \varGamma$$ for $$\varGamma = \{1,2\}$$ independent of $${Ra}$$ and $${Pr}$$. The BZF is quite reminiscent of wall mode states in rotating convection.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Max Planck Inst. for Dynamics and Self-Organization, Gottingen (Germany)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Nonlinear Studies (CNLS); Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; German Research Foundation (DFG)
OSTI Identifier:
1822786
Report Number(s):
LA-UR-20-27752
Journal ID: ISSN 0022-1120
Grant/Contract Number:  
89233218CNA000001; Sh405/8; Sh405/7
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Fluid Mechanics
Additional Journal Information:
Journal Volume: 915; Journal ID: ISSN 0022-1120
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Benard convection; rotating flows; rotating turbulence

Citation Formats

Zhang, Xuan, Ecke, Robert E., and Shishkina, Olga. Boundary zonal flows in rapidly rotating turbulent thermal convection. United States: N. p., 2021. Web. doi:10.1017/jfm.2021.74.
Zhang, Xuan, Ecke, Robert E., & Shishkina, Olga. Boundary zonal flows in rapidly rotating turbulent thermal convection. United States. https://doi.org/10.1017/jfm.2021.74
Zhang, Xuan, Ecke, Robert E., and Shishkina, Olga. Wed . "Boundary zonal flows in rapidly rotating turbulent thermal convection". United States. https://doi.org/10.1017/jfm.2021.74. https://www.osti.gov/servlets/purl/1822786.
@article{osti_1822786,
title = {Boundary zonal flows in rapidly rotating turbulent thermal convection},
author = {Zhang, Xuan and Ecke, Robert E. and Shishkina, Olga},
abstractNote = {Recently, in Zhang et al. (Phys. Rev. Lett., vol. 124, 2020, 084505), it was found that, in rapidly rotating turbulent Rayleigh–Bénard convection in slender cylindrical containers (with diameter-to-height aspect ratio $\varGamma =1/2$) filled with a small-Prandtl-number fluid (${Pr}\approx 0.8$), the large-scale circulation is suppressed and a boundary zonal flow (BZF) develops near the sidewall, characterized by a bimodal probability density function of the temperature, cyclonic fluid motion and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount (${>}60\,\%$) of the total heat transport for ${Pr} < 1$, but decreases rather abruptly for larger ${Pr}$ to approximately $35\,\%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent Rayleigh–Bénard convection in containers of different $\varGamma$ and over a broad range of ${Pr}$ and ${Ra}$. Furthermore, tirect numerical simulations for Prandtl number $0.1 \leq {\textit {Pr}} \leq 12.3$, Rayleigh number $10^7 \leq {Ra} \leq 5\times 10^{9}$, inverse Ekman number $10^{5} \leq 1/{\textit {Ek}} \leq 10^{7}$ and $\varGamma = 1/3$, 1/2, 3/4, 1 and 2 show that the BZF width $\delta _0$ scales with the Rayleigh number ${Ra}$ and Ekman number ${\textit {Ek}}$ as $\delta _0/H \sim \varGamma ^{0} Pr^{\{-1/4, 0\}} {Ra}^{1/4} {\textit {Ek}}^{2/3}$ ($\{{\textit {Pr}}<1, {\textit {Pr}}>1\}$) and with the drift frequency scales as $\omega /\varOmega \sim \varGamma ^{0} Pr^{-4/3} {Ra}\,{\textit {Ek}}^{5/3}$, where $H$ is the cell height and $\varOmega$ the angular rotation rate. The mode number of the BZF is 1 for $\varGamma \lesssim 1$ and $2 \varGamma$ for $\varGamma = \{1,2\}$ independent of ${Ra}$ and ${Pr}$. The BZF is quite reminiscent of wall mode states in rotating convection.},
doi = {10.1017/jfm.2021.74},
journal = {Journal of Fluid Mechanics},
number = ,
volume = 915,
place = {United States},
year = {Wed Mar 17 00:00:00 EDT 2021},
month = {Wed Mar 17 00:00:00 EDT 2021}
}

Works referenced in this record:

Boundary layer control of rotating convection systems
journal, January 2009

  • King, Eric M.; Stellmach, Stephan; Noir, Jerome
  • Nature, Vol. 457, Issue 7227
  • DOI: 10.1038/nature07647

Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection
journal, October 2017


Rotating turbulent thermal convection at very large Rayleigh numbers
journal, February 2021

  • Wedi, Marcel; van Gils, Dennis P. M.; Bodenschatz, Eberhard
  • Journal of Fluid Mechanics, Vol. 912
  • DOI: 10.1017/jfm.2020.1149

The onset of convection in rotating circular cylinders with experimental boundary conditions
journal, March 2009


Convection in a rotating cylinder. Part 1 Linear theory for moderate Prandtl numbers
journal, March 1993


Traveling-wave wall states in rotating Rayleigh-Bénard convection
journal, April 1993


Turbulent rotating convection: an experimental study
journal, May 2002


Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4 He
journal, April 1983

  • Lucas, P. G. J.; Pfotenhauer, J. M.; Donnelly, R. J.
  • Journal of Fluid Mechanics, Vol. 129, Issue -1
  • DOI: 10.1017/S0022112083000750

Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Bénard Convection
journal, January 2009


Heat transport measurements in turbulent rotating Rayleigh-Bénard convection
journal, September 2009


Thermal Boundary Layer Equation for Turbulent Rayleigh–Bénard Convection
journal, March 2015


Heat Transport Scaling in Turbulent Rayleigh-Bénard Convection: Effects of Rotation and Prandtl Number
journal, September 1997


Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection
journal, November 2020


The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection
journal, December 2019

  • Zwirner, Lukas; Khalilov, Ruslan; Kolesnichenko, Ilya
  • Journal of Fluid Mechanics, Vol. 884
  • DOI: 10.1017/jfm.2019.935

Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water
journal, May 2014

  • Horn, Susanne; Shishkina, Olga
  • Physics of Fluids, Vol. 26, Issue 5
  • DOI: 10.1063/1.4878669

A Theoretical and Experimental Study of Cellular Convection in Rotating Fluids
journal, February 1955


Small-Scale Properties of Turbulent Rayleigh-Bénard Convection
journal, January 2010


Hopf Bifurcation with Broken Reflection Symmetry in Rotating Rayleigh-Bénard Convection
journal, June 1992


Heat Transport in Low-Rossby-Number Rayleigh-Bénard Convection
journal, December 2012


Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
journal, April 2009

  • Ahlers, Guenter; Grossmann, Siegfried; Lohse, Detlef
  • Reviews of Modern Physics, Vol. 81, Issue 2
  • DOI: 10.1103/RevModPhys.81.503

On the influence of Coriolis force on onset of thermal convection
journal, August 1965


Robust wall states in rapidly rotating Rayleigh–Bénard convection
journal, May 2020


Experimental study of convective structures in rotating fluids
journal, June 1986


Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio
journal, September 2011


Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states
journal, April 1993

  • Zhong, Fang; Ecke, Robert E.; Steinberg, Victor
  • Journal of Fluid Mechanics, Vol. 249, Issue -1
  • DOI: 10.1017/S0022112093001119

Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
journal, July 2010


Asymptotic theory of wall-attached convection in a rotating fluid layer
journal, October 1993


Temperature and velocity field regimes of convective motions in a rotating plane fluid layer
journal, October 1990


The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection
journal, October 2011

  • Kunnen, Rudie P. J.; Stevens, Richard J. A. M.; Overkamp, Jim
  • Journal of Fluid Mechanics, Vol. 688
  • DOI: 10.1017/jfm.2011.383

Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns
journal, May 2018

  • Aurnou, Jonathan M.; Bertin, Vincent; Grannan, Alexander M.
  • Journal of Fluid Mechanics, Vol. 846
  • DOI: 10.1017/jfm.2018.292

The Effect of Wall Conduction on the Stability of a Fluid in a Right Circular Cylinder Heated From Below
journal, May 1983

  • Buell, J. C.; Catton, I.
  • Journal of Heat Transfer, Vol. 105, Issue 2
  • DOI: 10.1115/1.3245571

Square patterns in rotating Rayleigh-Bénard convection
journal, September 2005


Mean flow precession and temperature probability density functions in turbulent rotating convection
journal, March 2002

  • Hart, J. E.; Kittelman, S.; Ohlsen, D. R.
  • Physics of Fluids, Vol. 14, Issue 3
  • DOI: 10.1063/1.1446457

A study of Bénard convection with and without rotation
journal, April 1969


Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection
journal, February 2020


Turbulent rotating convection confined in a slender cylinder: The sidewall circulation
journal, February 2020


Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection
journal, January 2008


Recent Developments in Rayleigh-Bénard Convection
journal, January 2000


Rapidly rotating turbulent Rayleigh-Bénard convection
journal, September 1996


Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection
journal, April 2018


Toroidal and poloidal energy in rotating Rayleigh–Bénard convection
journal, December 2014


Nonlinear traveling waves in rotating Rayleigh-Bénard convection: Stability boundaries and phase diffusion
journal, April 1999


Stability and heat transfer of rotating cryogens. Part 3. Effects of finite cylindrical geometry and rotation on the onset of convection
journal, February 1987

  • Pfotenhauer, J. M.; Niemela, J. J.; Donnelly, R. J.
  • Journal of Fluid Mechanics, Vol. 175, Issue -1
  • DOI: 10.1017/S0022112087000296

Approaching the Asymptotic Regime of Rapidly Rotating Convection: Boundary Layers versus Interior Dynamics
journal, December 2014


The large-scale flow structure in turbulent rotating Rayleigh–Bénard convection
journal, November 2011


The horizontal scale of rotating convection in the geostrophic regime
journal, February 1997


Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection
journal, April 2018


The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection
journal, October 2011

  • Kunnen, Rudie P. J.; Stevens, Richard J. A. M.; Overkamp, Jim
  • Journal of Fluid Mechanics, Vol. 688
  • DOI: 10.1017/jfm.2011.383

Robust wall states in rapidly rotating Rayleigh–Bénard convection
journal, May 2020


Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection
journal, January 2010

  • Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef
  • Journal of Fluid Mechanics, Vol. 643
  • DOI: 10.1017/s0022112009992461

Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers
journal, October 1994


Boundary layer control of rotating convection systems
journal, January 2009

  • King, Eric M.; Stellmach, Stephan; Noir, Jerome
  • Nature, Vol. 457, Issue 7227
  • DOI: 10.1038/nature07647

Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water
journal, May 2014

  • Horn, Susanne; Shishkina, Olga
  • Physics of Fluids, Vol. 26, Issue 5
  • DOI: 10.1063/1.4878669

Pattern selection in rotating convection with experimental boundary conditions
journal, April 1993


Rotating Rayleigh-Bénard convection: Aspect-ratio dependence of the initial bifurcations
journal, May 1993


Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection
journal, March 2014


Model of Convective Taylor Columns in Rotating Rayleigh-Bénard Convection
journal, June 2010


Heat Transport in the Geostrophic Regime of Rotating Rayleigh-Bénard Convection
journal, September 2014


Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection
journal, October 1991


Thermal Boundary Layer Equation for Turbulent Rayleigh-Benard Convection
text, January 2014


Laboratory Exploration of Heat Transfer Regimes in Rapidly Rotating Turbulent Convection
text, January 2019