DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs

Abstract

Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wetmore » climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2];  [4]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [11]; ORCiD logo [12]; ORCiD logo [13];  [14]; ORCiD logo [15];  [16];  [2];  [17] more »; ORCiD logo [18]; ORCiD logo [19]; ORCiD logo [20];  [21]; ORCiD logo [22]; ORCiD logo [23]; ORCiD logo [24]; ORCiD logo [25]; ORCiD logo [26]; ORCiD logo [27]; ORCiD logo [28]; ORCiD logo [29];  [30]; ORCiD logo [31]; ORCiD logo [2]; ORCiD logo [32]; ORCiD logo [33]; ORCiD logo [34]; ORCiD logo [35];  [36]; ORCiD logo [37] « less
  1. Univ. of Wyoming, Laramie, WY (United States)
  2. Wageningen Univ. (Netherlands)
  3. German Centre for Integrative Biodiversity Research (iDiv), Leipzig (Germany); Martin Luther Univ. Halle-Wittenberg, Halle (Saale) (Germany)
  4. Morton Arboretum, Lisle, IL (United States)
  5. Leibniz Centre for Agricultural Landscape Research (ZALF), Paulienaue (Germany)
  6. National Center for Scientific Research (CNRS), Moulis (France)
  7. Univ. of Goettingen (Germany)
  8. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  9. German Centre for Integrative Biodiversity Research (iDiv), Leipzig (Germany); Max Planck Institute for Biogeochemistry, Jena (Germany)
  10. Univ. of Hamburg (Germany)
  11. Forschungszentrum Juelich (Germany); Macquarie Univ., NSW (Australia)
  12. Univ. of Montpellier, CNrs, EPHE, IRD, Montpellier (France)
  13. Univ. of Manchester (United Kingdom); Univ. of Tartu (Estonia)
  14. Univ. of Manchester (United Kingdom)
  15. Florida International Univ., Miami, FL (United States)
  16. Wageningen Univ. (Netherlands); Univ. of Leipzig (Germany)
  17. Noble Research Institute, LLC, Ardmore, OK (United States)
  18. Natural Resources Canada, Sault Ste Marie, ON (Canada). Canadian Forest Service
  19. Ecosystems and Conservation, Manaaki Whenua - Landcare Research, Lincoln (New Zealand)
  20. Andong National Univ. (Korea, Republic of)
  21. Univ. of Ss. Cyril and Methodius, Skopje (North Macedonia)
  22. German Centre for Integrative Biodiversity Research (iDiv), Leipzig (Germany); Zurich Univ. of Applied Sciences (ZHAW), Wadenswil (Switzerland)
  23. Normandy Univ., UNIROUEN, INRAE, ECODIV, Rouen (France)
  24. Univ. of Adelaide, SA (Australia); Univ. of Queensland, Brisbane, QLD (Australia)
  25. CIRAD, UPR Forêts et Sociétés, Yamoussoukro (Ivory Coast); Univ. of Montpellier, CIRAD, Montpellier (France); Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro (Ivory Coast)
  26. Stanford Univ., CA (United States). Dept. of Earth System Science; Stanford Univ., CA (United States). Stanford Woods Institute for the Environment
  27. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf (Switzerland)
  28. Univ. de Picardie Jules Verne, Amiens (France)
  29. Russian Academy of Sciences (RAS), St. Petersburg (Russian Federation); Russian Academy of Sciences (RAS), Togliatti (Russian Federation). Samara Scientific Center; Russian Academy of Sciences (RAS), Tobolsk (Russian Federation). Tobolsk Complex Scientific Station
  30. Australian National Univ., Canberra, ACT (Australia); Univ. of Edinburgh, Scotland (United Kingdom)
  31. Estonian Univ. of Life Sciences, Tartu (Estonia); Estonian Academy of Sciences, Tallinn (Estonia)
  32. CREAF-CSIC-UAB, Barcelona (Spain); CREAF, Cerdanyola del Vallès (Spain)
  33. Univ. of Minnesota, St. Paul, MN (United States); Univ. of Western Sydney, NSW (Australia)
  34. Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Germany); Palmengarten, Frankfurt (Germany)
  35. Univ. of Nottingham (United Kingdom)
  36. Univ. of Valladolid and INIA, Palencia (Spain). Sustainable Forest Management Research Institute; Univ. of Valladolid, Palencia (Spain). School of Agricultural Engineering
  37. German Centre for Integrative Biodiversity Research (iDiv), Leipzig (Germany); Univ. of Leipzig (Germany)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1814358
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Ecology and Evolution
Additional Journal Information:
Journal Volume: 5; Journal Issue: 8; Journal ID: ISSN 2397-334X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Laughlin, Daniel C., Mommer, Liesje, Sabatini, Francesco Maria, Bruelheide, Helge, Kuyper, Thom W., McCormack, M. Luke, Bergmann, Joana, Freschet, Grégoire T., Guerrero-Ramírez, Nathaly R., Iversen, Colleen M., Kattge, Jens, Meier, Ina C., Poorter, Hendrik, Roumet, Catherine, Semchenko, Marina, Sweeney, Christopher J., Valverde-Barrantes, Oscar J., van der Plas, Fons, van Ruijven, Jasper, York, Larry M., Aubin, Isabelle, Burge, Olivia R., Byun, Chaeho, Ćušterevska, Renata, Dengler, Jürgen, Forey, Estelle, Guerin, Greg R., Hérault, Bruno, Jackson, Robert B., Karger, Dirk Nikolaus, Lenoir, Jonathan, Lysenko, Tatiana, Meir, Patrick, Niinemets, Ülo, Ozinga, Wim A., Peñuelas, Josep, Reich, Peter B., Schmidt, Marco, Schrodt, Franziska, Velázquez, Eduardo, and Weigelt, Alexandra. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. United States: N. p., 2021. Web. doi:10.1038/s41559-021-01471-7.
Laughlin, Daniel C., Mommer, Liesje, Sabatini, Francesco Maria, Bruelheide, Helge, Kuyper, Thom W., McCormack, M. Luke, Bergmann, Joana, Freschet, Grégoire T., Guerrero-Ramírez, Nathaly R., Iversen, Colleen M., Kattge, Jens, Meier, Ina C., Poorter, Hendrik, Roumet, Catherine, Semchenko, Marina, Sweeney, Christopher J., Valverde-Barrantes, Oscar J., van der Plas, Fons, van Ruijven, Jasper, York, Larry M., Aubin, Isabelle, Burge, Olivia R., Byun, Chaeho, Ćušterevska, Renata, Dengler, Jürgen, Forey, Estelle, Guerin, Greg R., Hérault, Bruno, Jackson, Robert B., Karger, Dirk Nikolaus, Lenoir, Jonathan, Lysenko, Tatiana, Meir, Patrick, Niinemets, Ülo, Ozinga, Wim A., Peñuelas, Josep, Reich, Peter B., Schmidt, Marco, Schrodt, Franziska, Velázquez, Eduardo, & Weigelt, Alexandra. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. United States. https://doi.org/10.1038/s41559-021-01471-7
Laughlin, Daniel C., Mommer, Liesje, Sabatini, Francesco Maria, Bruelheide, Helge, Kuyper, Thom W., McCormack, M. Luke, Bergmann, Joana, Freschet, Grégoire T., Guerrero-Ramírez, Nathaly R., Iversen, Colleen M., Kattge, Jens, Meier, Ina C., Poorter, Hendrik, Roumet, Catherine, Semchenko, Marina, Sweeney, Christopher J., Valverde-Barrantes, Oscar J., van der Plas, Fons, van Ruijven, Jasper, York, Larry M., Aubin, Isabelle, Burge, Olivia R., Byun, Chaeho, Ćušterevska, Renata, Dengler, Jürgen, Forey, Estelle, Guerin, Greg R., Hérault, Bruno, Jackson, Robert B., Karger, Dirk Nikolaus, Lenoir, Jonathan, Lysenko, Tatiana, Meir, Patrick, Niinemets, Ülo, Ozinga, Wim A., Peñuelas, Josep, Reich, Peter B., Schmidt, Marco, Schrodt, Franziska, Velázquez, Eduardo, and Weigelt, Alexandra. Thu . "Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs". United States. https://doi.org/10.1038/s41559-021-01471-7. https://www.osti.gov/servlets/purl/1814358.
@article{osti_1814358,
title = {Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs},
author = {Laughlin, Daniel C. and Mommer, Liesje and Sabatini, Francesco Maria and Bruelheide, Helge and Kuyper, Thom W. and McCormack, M. Luke and Bergmann, Joana and Freschet, Grégoire T. and Guerrero-Ramírez, Nathaly R. and Iversen, Colleen M. and Kattge, Jens and Meier, Ina C. and Poorter, Hendrik and Roumet, Catherine and Semchenko, Marina and Sweeney, Christopher J. and Valverde-Barrantes, Oscar J. and van der Plas, Fons and van Ruijven, Jasper and York, Larry M. and Aubin, Isabelle and Burge, Olivia R. and Byun, Chaeho and Ćušterevska, Renata and Dengler, Jürgen and Forey, Estelle and Guerin, Greg R. and Hérault, Bruno and Jackson, Robert B. and Karger, Dirk Nikolaus and Lenoir, Jonathan and Lysenko, Tatiana and Meir, Patrick and Niinemets, Ülo and Ozinga, Wim A. and Peñuelas, Josep and Reich, Peter B. and Schmidt, Marco and Schrodt, Franziska and Velázquez, Eduardo and Weigelt, Alexandra},
abstractNote = {Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.},
doi = {10.1038/s41559-021-01471-7},
journal = {Nature Ecology and Evolution},
number = 8,
volume = 5,
place = {United States},
year = {Thu Jun 10 00:00:00 EDT 2021},
month = {Thu Jun 10 00:00:00 EDT 2021}
}

Works referenced in this record:

A scale‐dependent framework for trade‐offs, syndromes, and specialization in organismal biology
journal, January 2020


The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation
journal, May 2015

  • Gompert, Zachariah; Jahner, Joshua P.; Scholl, Cynthia F.
  • Molecular Ecology, Vol. 24, Issue 11
  • DOI: 10.1111/mec.13199

Variation of first-order root traits across climatic gradients and evolutionary trends in geological time: Root trait variation and evolution
journal, February 2013

  • Chen, Weile; Zeng, Hui; Eissenstat, David M.
  • Global Ecology and Biogeography, Vol. 22, Issue 7
  • DOI: 10.1111/geb.12048

Sampling plant functional traits: What proportion of the species need to be measured?
journal, February 2007


Global mycorrhizal plant distribution linked to terrestrial carbon stocks
journal, November 2019

  • Soudzilovskaia, Nadejda A.; van Bodegom, Peter M.; Terrer, César
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-13019-2

Global root traits (GRooT) database
journal, September 2020

  • Guerrero‐Ramírez, Nathaly R.; Mommer, Liesje; Freschet, Grégoire T.
  • Global Ecology and Biogeography, Vol. 30, Issue 1
  • DOI: 10.1111/geb.13179

Plant ecological indicator values as predictors of fine‐root trait variations
journal, March 2020


Linking trait similarity to interspecific spatial associations in a moist tropical forest
journal, July 2015

  • Velázquez, Eduardo; Paine, C. E. Timothy; May, Felix
  • Journal of Vegetation Science, Vol. 26, Issue 6
  • DOI: 10.1111/jvs.12313

sPlot – A new tool for global vegetation analyses
journal, March 2019

  • Bruelheide, Helge; Dengler, Jürgen; Jiménez‐Alfaro, Borja
  • Journal of Vegetation Science, Vol. 30, Issue 2
  • DOI: 10.1111/jvs.12710

Terrestrial Ecoregions of the World: A New Map of Life on Earth
journal, January 2001


A Neutral Model for the Evolution of Diet Breadth
journal, August 2017

  • Forister, Matthew L.; Jenkins, Stephen H.
  • The American Naturalist, Vol. 190, Issue 2
  • DOI: 10.1086/692325

Fine Root Traits Are Correlated with Flooding Duration while Aboveground Traits Are Related to Grazing in an Ephemeral Wetland
journal, October 2018


Environmental Constraints on a Global Relationship Among leaf and root Traits of Grasses
journal, January 2005

  • Craine, Joseph M.; Lee, William G.; Bond, William J.
  • Ecology, Vol. 86, Issue 1
  • DOI: 10.1890/04-1075

A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants
journal, April 2017

  • Valverde-Barrantes, Oscar J.; Freschet, Grégoire T.; Roumet, Catherine
  • New Phytologist, Vol. 215, Issue 4
  • DOI: 10.1111/nph.14571

ggplot2
book, January 2016


The whole-plant compensation point as a measure of juvenile tree light requirements
journal, June 2013


Root architectural tradeoffs for water and phosphorus acquisition
journal, January 2005

  • Ho, Melissa D.; Rosas, Juan Carlos; Brown, Kathleen M.
  • Functional Plant Biology, Vol. 32, Issue 8
  • DOI: 10.1071/FP05043

Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum
journal, March 2016

  • Kramer-Walter, Kris R.; Bellingham, Peter J.; Millar, Timothy R.
  • Journal of Ecology, Vol. 104, Issue 5
  • DOI: 10.1111/1365-2745.12562

The worldwide leaf economics spectrum
journal, April 2004

  • Wright, Ian J.; Reich, Peter B.; Westoby, Mark
  • Nature, Vol. 428, Issue 6985
  • DOI: 10.1038/nature02403

Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
journal, May 2019


The global spectrum of plant form and function
journal, December 2015

  • Díaz, Sandra; Kattge, Jens; Cornelissen, Johannes H. C.
  • Nature, Vol. 529, Issue 7585
  • DOI: 10.1038/nature16489

Below‐ground frontiers in trait‐based plant ecology
journal, October 2016


Climate, soil and plant functional types as drivers of global fine-root trait variation
journal, April 2017

  • Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
  • Journal of Ecology, Vol. 105, Issue 5
  • DOI: 10.1111/1365-2745.12769

Adaptive root foraging strategies along a boreal-temperate forest gradient
journal, June 2017

  • Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko
  • New Phytologist, Vol. 215, Issue 3
  • DOI: 10.1111/nph.14643

Climatic constraints on trait-based forest assembly: Climatic constraints on forest assembly
journal, September 2011


Towards a multidimensional root trait framework: a tree root review
journal, May 2016

  • Weemstra, Monique; Mommer, Liesje; Visser, Eric J. W.
  • New Phytologist, Vol. 211, Issue 4
  • DOI: 10.1111/nph.14003

A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
journal, February 2017

  • Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
  • New Phytologist, Vol. 215, Issue 1, p. 15-26
  • DOI: 10.1111/nph.14486

Fitting Linear Mixed-Effects Models Using lme4
journal, January 2015

  • Bates, Douglas; Mächler, Martin; Bolker, Ben
  • Journal of Statistical Software, Vol. 67, Issue 1
  • DOI: 10.18637/jss.v067.i01

Patterns of structural and defense investments in fine roots of Scots pine ( Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe
journal, October 2016

  • Zadworny, Marcin; McCormack, M. Luke; Żytkowiak, Roma
  • Global Change Biology, Vol. 23, Issue 3
  • DOI: 10.1111/gcb.13514

lmerTest Package: Tests in Linear Mixed Effects Models
journal, January 2017

  • Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune H. B.
  • Journal of Statistical Software, Vol. 82, Issue 13
  • DOI: 10.18637/jss.v082.i13

Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity: Functional diversity along ecological gradients
journal, March 2012


How mycorrhizal associations drive plant population and community biology
journal, February 2020


The proportion of soil-borne pathogens increases with warming at the global scale
journal, May 2020

  • Delgado-Baquerizo, Manuel; Guerra, Carlos A.; Cano-Díaz, Concha
  • Nature Climate Change, Vol. 10, Issue 6
  • DOI: 10.1038/s41558-020-0759-3

Aridity increases below-ground niche breadth in grass communities
journal, January 2017

  • Butterfield, Bradley J.; Bradford, John B.; Munson, Seth M.
  • Plant Ecology, Vol. 218, Issue 4
  • DOI: 10.1007/s11258-016-0696-4

The global-scale distributions of soil protists and their contributions to belowground systems
journal, January 2020

  • Oliverio, Angela M.; Geisen, Stefan; Delgado-Baquerizo, Manuel
  • Science Advances, Vol. 6, Issue 4
  • DOI: 10.1126/sciadv.aax8787

Quantifying multimodal trait distributions improves trait-based predictions of species abundances and functional diversity
journal, August 2014

  • Laughlin, Daniel C.; Joshi, Chaitanya; Richardson, Sarah J.
  • Journal of Vegetation Science, Vol. 26, Issue 1
  • DOI: 10.1111/jvs.12219

Leading dimensions in absorptive root trait variation across 96 subtropical forest species
journal, May 2014

  • Kong, Deliang; Ma, Chengen; Zhang, Qian
  • New Phytologist, Vol. 203, Issue 3
  • DOI: 10.1111/nph.12842

Global diversity and geography of soil fungi
journal, November 2014


Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum?
journal, October 2017

  • de la Riva, Enrique G.; Marañón, Teodoro; Pérez-Ramos, Ignacio M.
  • Plant and Soil, Vol. 424, Issue 1-2
  • DOI: 10.1007/s11104-017-3433-4

Trade-offs in community ecology: linking spatial scales and species coexistence
journal, January 2004


Global trait–environment relationships of plant communities
journal, November 2018

  • Bruelheide, Helge; Dengler, Jürgen; Purschke, Oliver
  • Nature Ecology & Evolution, Vol. 2, Issue 12
  • DOI: 10.1038/s41559-018-0699-8

Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah
journal, January 2000

  • Hacke, Uwe G.; Sperry, John S.; Pittermann, Jarmila
  • Basic and Applied Ecology, Vol. 1, Issue 1
  • DOI: 10.1078/1439-1791-00006

Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal
journal, June 2005


Mycorrhizas in ecosystems
journal, April 1991


The Evolutionary Strategies that Shape Ecosystems
book, January 2012


Evolutionary history resolves global organization of root functional traits
journal, February 2018


Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests: Soil-climate interactions explain functional trait variation
journal, April 2016

  • Simpson, Angela H.; Richardson, Sarah J.; Laughlin, Daniel C.
  • Global Ecology and Biogeography, Vol. 25, Issue 8
  • DOI: 10.1111/geb.12457

The role of functional traits in species distributions revealed through a hierarchical model
journal, November 2011


The fungal collaboration gradient dominates the root economics space in plants
journal, July 2020

  • Bergmann, Joana; Weigelt, Alexandra; van der Plas, Fons
  • Science Advances, Vol. 6, Issue 27
  • DOI: 10.1126/sciadv.aba3756

Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
journal, June 2008

  • Zomer, Robert J.; Trabucco, Antonio; Bossio, Deborah A.
  • Agriculture, Ecosystems & Environment, Vol. 126, Issue 1-2
  • DOI: 10.1016/j.agee.2008.01.014

Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models
journal, December 2018

  • Miller, Jesse E. D.; Damschen, Ellen I.; Ives, Anthony R.
  • Methods in Ecology and Evolution, Vol. 10, Issue 3
  • DOI: 10.1111/2041-210X.13119

Understanding the regional pattern of projected future changes in extreme precipitation
journal, May 2017

  • Pfahl, S.; O’Gorman, P. A.; Fischer, E. M.
  • Nature Climate Change, Vol. 7, Issue 6
  • DOI: 10.1038/nclimate3287

Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints
journal, June 2015


The Evolution of Ecological Specialization
journal, November 1988


Global patterns of root turnover for terrestrial ecosystems: RESEARCH Root turnover in terrestrial ecosystems
journal, July 2000


Survival rates indicate that correlations between community‐weighted mean traits and environments can be unreliable estimates of the adaptive value of traits
journal, January 2018

  • Laughlin, Daniel C.; Strahan, Robert T.; Adler, Peter B.
  • Ecology Letters, Vol. 21, Issue 3
  • DOI: 10.1111/ele.12914

Selecting traits that explain species-environment relationships: a generalized linear mixed model approach
journal, December 2012


Plant lignin content altered by soil microbial community
journal, November 2014

  • Bennett, Alison E.; Grussu, Dominic; Kam, Jason
  • New Phytologist, Vol. 206, Issue 1
  • DOI: 10.1111/nph.13171

Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants
journal, July 2019

  • Kumordzi, Bright B.; Aubin, Isabelle; Cardou, Françoise
  • Functional Ecology, Vol. 33, Issue 9
  • DOI: 10.1111/1365-2435.13402

TRY plant trait database – enhanced coverage and open access
journal, December 2019

  • Kattge, Jens; Bönisch, Gerhard; Díaz, Sandra
  • Global Change Biology, Vol. 26, Issue 1
  • DOI: 10.1111/gcb.14904

Climatologies at high resolution for the earth’s land surface areas
journal, September 2017

  • Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.122