DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2

Abstract

Topological superconductors (TSCs) are unconventional superconductors with bulk superconducting gap and in-gap Majorana states on the boundary that may be used as topological qubits for quantum computation. Despite their importance in both fundamental research and applications, natural TSCs are very rare. Here, combining state of the art synchrotron and laser-based angle-resolved photoemission spectroscopy, we investigated a stoichiometric transition metal dichalcogenide (TMD), 2M-WS2 with a superconducting transition temperature of 8.8 K (the highest among all TMDs in the natural form up to date) and observed distinctive topological surface states (TSSs). Furthermore, in the superconducting state, we found that the TSSs acquired a nodeless superconducting gap with similar magnitude as that of the bulk states. These discoveries not only evidence 2M-WS2 as an intrinsic TSC without the need of sensitive composition tuning or sophisticated heterostructures fabrication, but also provide an ideal platform for device applications thanks to its van der Waals layered structure.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7]; ORCiD logo [8];  [9];  [10];  [10];  [11]; ORCiD logo [12]; ORCiD logo [12]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [14];  [7];  [15];  [16] more »; ORCiD logo [17]; ORCiD logo [3];  [18]; ORCiD logo [7];  [19] « less
  1. ShanghaiTech Univ. (China); Univ. of Oxford (United Kingdom). Dept. of Physics; ShanghaiTech Laboratory for Topological Physics (China)
  2. ShanghaiTech Univ. (China); ShanghaiTech Laboratory for Topological Physics (China); Chinese Academy of Sciences (CAS), Beijing (China)
  3. Chinese Academy of Sciences (CAS), Shanghai (China). Shanghai Inst. of Ceramics, State Key Lab. of High Performance Ceramics and Superfine Microstructure; Peking Univ., Beijing (China). State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering
  4. China Jiliang Univ., Hangzhou (China). School of Physics; Nanjing Univ. (China). National Laboratory of Solid State Microstructures, School of Physics; Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
  5. Tsinghua Univ., Beijing (China). State Key Laboratory of Low Dimensional Quantum Physics, Dept. of Physics
  6. ShanghaiTech Univ. (China); ShanghaiTech Laboratory for Topological Physics (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  7. ShanghaiTech Univ. (China); ShanghaiTech Laboratory for Topological Physics (China)
  8. ShanghaiTech Univ. (China). Center for Transformative Science; ShanghaiTech Univ. (China). Shanghai high repetition rate XFEL and extreme light facility (SHINE)
  9. Univ. of Oxford (United Kingdom). Dept. of Physics
  10. ShanghaiTech Univ. (China); Chinese Academy of Sciences (CAS), Beijing (China)
  11. Chinese Academy of Sciences (CAS), Shanghai (China). Shanghai Inst. of Ceramics, State Key Lab. of High Performance Ceramics and Superfine Microstructure
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  13. Elettra-Sincrotrone Trieste (Italy)
  14. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Diamond Light Source, Ltd.
  15. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  16. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics
  17. Nanjing Univ. (China). National Laboratory of Solid State Microstructures, School of Physics; Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
  18. Tsinghua Univ., Beijing (China). State Key Laboratory of Low Dimensional Quantum Physics, Dept. of Physics; Frontier Science Center for Quantum Information, Beijing (China)
  19. ShanghaiTech Univ. (China); Univ. of Oxford (United Kingdom). Dept. of Physics; ShanghaiTech Laboratory for Topological Physics (China); Tsinghua Univ., Beijing (China). State Key Laboratory of Low Dimensional Quantum Physics, Dept. of Physics
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1814157
Alternate Identifier(s):
OSTI ID: 1812543
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Li, Y. W., Zheng, H. J., Fang, Y. Q., Zhang, D. Q., Chen, Y. J., Chen, C., Liang, A. J., Shi, W. J., Pei, D., Xu, L. X., Liu, S., Pan, J., Lu, D. H., Hashimoto, M., Barinov, A., Jung, S. W., Cacho, C., Wang, M. X., He, Y., Fu, L., Zhang, H. J., Huang, F. Q., Yang, L. X., Liu, Z. K., and Chen, Y. L. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. United States: N. p., 2021. Web. doi:10.1038/s41467-021-23076-1.
Li, Y. W., Zheng, H. J., Fang, Y. Q., Zhang, D. Q., Chen, Y. J., Chen, C., Liang, A. J., Shi, W. J., Pei, D., Xu, L. X., Liu, S., Pan, J., Lu, D. H., Hashimoto, M., Barinov, A., Jung, S. W., Cacho, C., Wang, M. X., He, Y., Fu, L., Zhang, H. J., Huang, F. Q., Yang, L. X., Liu, Z. K., & Chen, Y. L. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. United States. https://doi.org/10.1038/s41467-021-23076-1
Li, Y. W., Zheng, H. J., Fang, Y. Q., Zhang, D. Q., Chen, Y. J., Chen, C., Liang, A. J., Shi, W. J., Pei, D., Xu, L. X., Liu, S., Pan, J., Lu, D. H., Hashimoto, M., Barinov, A., Jung, S. W., Cacho, C., Wang, M. X., He, Y., Fu, L., Zhang, H. J., Huang, F. Q., Yang, L. X., Liu, Z. K., and Chen, Y. L. Mon . "Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2". United States. https://doi.org/10.1038/s41467-021-23076-1. https://www.osti.gov/servlets/purl/1814157.
@article{osti_1814157,
title = {Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2},
author = {Li, Y. W. and Zheng, H. J. and Fang, Y. Q. and Zhang, D. Q. and Chen, Y. J. and Chen, C. and Liang, A. J. and Shi, W. J. and Pei, D. and Xu, L. X. and Liu, S. and Pan, J. and Lu, D. H. and Hashimoto, M. and Barinov, A. and Jung, S. W. and Cacho, C. and Wang, M. X. and He, Y. and Fu, L. and Zhang, H. J. and Huang, F. Q. and Yang, L. X. and Liu, Z. K. and Chen, Y. L.},
abstractNote = {Topological superconductors (TSCs) are unconventional superconductors with bulk superconducting gap and in-gap Majorana states on the boundary that may be used as topological qubits for quantum computation. Despite their importance in both fundamental research and applications, natural TSCs are very rare. Here, combining state of the art synchrotron and laser-based angle-resolved photoemission spectroscopy, we investigated a stoichiometric transition metal dichalcogenide (TMD), 2M-WS2 with a superconducting transition temperature of 8.8 K (the highest among all TMDs in the natural form up to date) and observed distinctive topological surface states (TSSs). Furthermore, in the superconducting state, we found that the TSSs acquired a nodeless superconducting gap with similar magnitude as that of the bulk states. These discoveries not only evidence 2M-WS2 as an intrinsic TSC without the need of sensitive composition tuning or sophisticated heterostructures fabrication, but also provide an ideal platform for device applications thanks to its van der Waals layered structure.},
doi = {10.1038/s41467-021-23076-1},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Mon May 17 00:00:00 EDT 2021},
month = {Mon May 17 00:00:00 EDT 2021}
}

Works referenced in this record:

Chiral topological superconductor from the quantum Hall state
journal, November 2010


Topological superconductivity in a van der Waals heterostructure
journal, December 2020


Topological insulators and superconductors
journal, October 2011


Gate‐Tunable Electrical Transport in Thin 2M‐WS 2 Flakes
journal, July 2019

  • Che, Xiangli; Deng, Yujun; Fang, Yuqiang
  • Advanced Electronic Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aelm.201900462

Discovery of Superconductivity in 2M WS 2 with Possible Topological Surface States
journal, June 2019


Topological Quantum Computation--From Basic Concepts to First Experiments
journal, March 2013


Bulk metals with helical surface states
journal, November 2010


Observation of superconductivity in pressurized 2M WSe 2 crystals
journal, January 2019

  • Fang, Yuqiang; Dong, Qing; Pan, Jie
  • Journal of Materials Chemistry C, Vol. 7, Issue 28
  • DOI: 10.1039/C9TC02417D

Odd-Parity Topological Superconductors: Theory and Application to Cu x Bi 2 Se 3
journal, August 2010


Robust topological surface state against direct surface contamination
journal, February 2012

  • Liu, Z. K.; Chen, Y. L.; Analytis, J. G.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, Issue 5
  • DOI: 10.1016/j.physe.2011.10.023

Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
journal, February 2019


Colloquium: Topological insulators
journal, November 2010


Topological Superconductivity on the Surface of Fe-Based Superconductors
journal, July 2016


Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor
journal, November 2014

  • Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya
  • Nature Physics, Vol. 10, Issue 12
  • DOI: 10.1038/nphys3139

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
journal, July 2018


Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe 2
journal, November 2016


Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2 H TaSe 2
journal, March 2018


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Evidence for dispersing 1D Majorana channels in an iron-based superconductor
journal, January 2020


Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
journal, April 2012


Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2M-WS2
journal, September 2019

  • Guguchia, Zurab; Gawryluk, Dariusz J.; Brzezinska, Marta
  • npj Quantum Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41535-019-0189-5

Multiple topological states in iron-based superconductors
journal, September 2018


Effects of surface-bulk hybridization in three-dimensional topological metals
journal, May 2014


Gate-tunable phase transitions in thin flakes of 1T-TaS2
journal, January 2015


Evidence of anisotropic Majorana bound states in 2M-WS2
journal, July 2019


Non-Abelian anyons and topological quantum computation
journal, September 2008


Observation of topological superconductivity on the surface of an iron-based superconductor
journal, March 2018


Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
journal, March 2008


R Ru B 2 ( R = Y ,   Lu ) , topological superconductor candidates with hourglass-type Dirac ring
journal, September 2020


Chiral p-wave order in Sr 2 RuO 4
journal, March 2012


Gate-induced superconductivity in a monolayer topological insulator
journal, October 2018


Recent Advances in Topological Quantum Materials by Angle-Resolved Photoemission Spectroscopy
journal, October 2020


The Coexistence of Superconductivity and Topological Order in the Bi 2 Se 3 Thin Films
journal, March 2012


From Mott state to superconductivity in 1T-TaS2
journal, November 2008

  • Sipos, B.; Kusmartseva, A. F.; Akrap, A.
  • Nature Materials, Vol. 7, Issue 12
  • DOI: 10.1038/nmat2318

Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing in the Undoped Topological Insulator
journal, February 2010


Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
journal, October 2014


Anisotropic Full-Gap Superconductivity in 2M-WS 2 Topological Metal with Intrinsic Proximity Effect
journal, December 2020


In situ click chemistry generation of cyclooxygenase-2 inhibitors
journal, February 2017


Majorana zero modes in superconductor–semiconductor heterostructures
journal, May 2018

  • Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.
  • Nature Reviews Materials, Vol. 3, Issue 5
  • DOI: 10.1038/s41578-018-0003-1

Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions
journal, November 2012

  • Das, Anindya; Ronen, Yuval; Most, Yonatan
  • Nature Physics, Vol. 8, Issue 12
  • DOI: 10.1038/nphys2479

Topological superconductors: a review
journal, May 2017


Engineering a p + ip superconductor: Comparison of topological insulator and Rashba spin-orbit-coupled materials
journal, May 2011


Evidence for Majorana bound states in an iron-based superconductor
journal, August 2018


Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide
journal, February 2020


Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides
journal, November 2017

  • Bahramy, M. S.; Clark, O. J.; Yang, B. -J.
  • Nature Materials, Vol. 17, Issue 1
  • DOI: 10.1038/nmat5031