DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diamond magnetometer enhanced by ferrite flux concentrators

Abstract

Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (≲1 kHz) is presently ≳10 pTs1/2, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ~ 250-fold increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ~ 0.9pTs1/2 to magnetic fields in the frequency range between 10 and 1000 Hz. This is accomplished using a dual-resonance modulation technique to suppress the effect of thermal shifts of the NV spin levels. The magnetometer uses 200 mW of laser power and 20 mW of microwave power. This work introduces a new degree of freedom for the design of diamond sensors by using structured magnetic materials to manipulate magnetic fields.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)
  2. ODMR Technologies Inc., El Cerrito, CA (United States); Univ. of California, Berkeley, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  5. Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Latvia, Riga (Latvia)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; National Institutes of Health (NIH); National Science Foundation (NSF)
OSTI Identifier:
1812678
Report Number(s):
LA-UR-21-24314
Journal ID: ISSN 2643-1564; TRN: US2213868
Grant/Contract Number:  
89233218CNA000001; 1R01EB025703-01; 1R21EB027405-01; DMR-1809800
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Research
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2643-1564
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Atomic, Nuclear and Particle Physics; Biological Science; Magnetometer, NV-diamond

Citation Formats

Fescenko, Ilja, Jarmola, Andrey, Savukov, Igor, Kehayias, Pauli, Smits, Janis, Damron, Joshua, Ristoff, Nathaniel, Mosavian, Nazanin, and Acosta, Victor M. Diamond magnetometer enhanced by ferrite flux concentrators. United States: N. p., 2020. Web. doi:10.1103/physrevresearch.2.023394.
Fescenko, Ilja, Jarmola, Andrey, Savukov, Igor, Kehayias, Pauli, Smits, Janis, Damron, Joshua, Ristoff, Nathaniel, Mosavian, Nazanin, & Acosta, Victor M. Diamond magnetometer enhanced by ferrite flux concentrators. United States. https://doi.org/10.1103/physrevresearch.2.023394
Fescenko, Ilja, Jarmola, Andrey, Savukov, Igor, Kehayias, Pauli, Smits, Janis, Damron, Joshua, Ristoff, Nathaniel, Mosavian, Nazanin, and Acosta, Victor M. Wed . "Diamond magnetometer enhanced by ferrite flux concentrators". United States. https://doi.org/10.1103/physrevresearch.2.023394. https://www.osti.gov/servlets/purl/1812678.
@article{osti_1812678,
title = {Diamond magnetometer enhanced by ferrite flux concentrators},
author = {Fescenko, Ilja and Jarmola, Andrey and Savukov, Igor and Kehayias, Pauli and Smits, Janis and Damron, Joshua and Ristoff, Nathaniel and Mosavian, Nazanin and Acosta, Victor M.},
abstractNote = {Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (≲1 kHz) is presently ≳10 pTs1/2, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ~ 250-fold increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ~ 0.9pTs1/2 to magnetic fields in the frequency range between 10 and 1000 Hz. This is accomplished using a dual-resonance modulation technique to suppress the effect of thermal shifts of the NV spin levels. The magnetometer uses 200 mW of laser power and 20 mW of microwave power. This work introduces a new degree of freedom for the design of diamond sensors by using structured magnetic materials to manipulate magnetic fields.},
doi = {10.1103/physrevresearch.2.023394},
journal = {Physical Review Research},
number = 2,
volume = 2,
place = {United States},
year = {Wed Jun 24 00:00:00 EDT 2020},
month = {Wed Jun 24 00:00:00 EDT 2020}
}

Works referenced in this record:

Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging
journal, November 2019

  • Lourette, S.; Bougas, L.; Kayci, M.
  • Journal of Applied Physics, Vol. 126, Issue 19
  • DOI: 10.1063/1.5125273

Miniature Cavity-Enhanced Diamond Magnetometer
journal, October 2017


Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology
journal, April 2014


Electric-field sensing using single diamond spins
journal, April 2011

  • Dolde, F.; Fedder, H.; Doherty, M. W.
  • Nature Physics, Vol. 7, Issue 6
  • DOI: 10.1038/nphys1969

Magnetic spin imaging under ambient conditions with sub-cellular resolution
journal, March 2013

  • Steinert, S.; Ziem, F.; Hall, L. T.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2588

Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond
journal, June 2018

  • Clevenson, Hannah; Pham, Linh M.; Teale, Carson
  • Applied Physics Letters, Vol. 112, Issue 25
  • DOI: 10.1063/1.5034216

Single-cell magnetic imaging using a quantum diamond microscope
journal, June 2015

  • Glenn, David R.; Lee, Kyungheon; Park, Hongkun
  • Nature Methods, Vol. 12, Issue 8
  • DOI: 10.1038/nmeth.3449

Controlling the quantum dynamics of a mesoscopic spin bath in diamond
journal, April 2012

  • de Lange, Gijs; van der Sar, Toeno; Blok, Machiel
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00382

Miniature atomic magnetometer integrated with flux concentrators
journal, January 2009

  • Griffith, W. Clark; Jimenez-Martinez, Ricardo; Shah, Vishal
  • Applied Physics Letters, Vol. 94, Issue 2
  • DOI: 10.1063/1.3056152

Magnetic sensors and their applications
journal, June 2006


Statistics of atomic frequency standards
journal, January 1966


Window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers
journal, February 2020


Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits
journal, August 2015


On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study
journal, August 2016


Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing
journal, November 2019


Simultaneous Broadband Vector Magnetometry Using Solid-State Spins
journal, September 2018


Subpicotesla Diamond Magnetometry
journal, October 2015


Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
journal, January 2018


Color Centers in Diamond as Novel Probes of Superconductivity
journal, September 2018

  • Acosta, Victor M.; Bouchard, Louis S.; Budker, Dmitry
  • Journal of Superconductivity and Novel Magnetism, Vol. 32, Issue 1
  • DOI: 10.1007/s10948-018-4877-3

Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond
journal, April 2019


Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications
journal, September 2009


Microwave Device Characterization Using a Widefield Diamond Microscope
journal, October 2018


Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control
journal, July 2018


Cavity-Enhanced Room-Temperature Magnetometry Using Absorption by Nitrogen-Vacancy Centers in Diamond
journal, April 2014


Formation of perfectly aligned high-density NV centers in (111) CVD-grown diamonds for magnetic field imaging of magnetic particles
journal, July 2019

  • Ozawa, Hayato; Hatano, Yuji; Iwasaki, Takayuki
  • Japanese Journal of Applied Physics, Vol. 58, Issue SI
  • DOI: 10.7567/1347-4065/ab203c

Diamond Quantum Devices in Biology
journal, April 2016

  • Wu, Yuzhou; Jelezko, Fedor; Plenio, Martin B.
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201506556

Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide
journal, April 2015

  • Clevenson, Hannah; Trusheim, Matthew E.; Teale, Carson
  • Nature Physics, Vol. 11, Issue 5
  • DOI: 10.1038/nphys3291

Influence of size parameters and magnetic field intensity upon the amplification characteristics of magnetic flux concentrators
journal, December 2018

  • Zhang, Xiaoming; Bi, Yu; Chen, Guobin
  • AIP Advances, Vol. 8, Issue 12
  • DOI: 10.1063/1.5066271

Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor
journal, July 2019

  • Smits, Janis; Damron, Joshua T.; Kehayias, Pauli
  • Science Advances, Vol. 5, Issue 7
  • DOI: 10.1126/sciadv.aaw7895

Diamond Magnetic Microscopy of Malarial Hemozoin Nanocrystals
journal, March 2019


Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
journal, November 2016

  • Barry, John F.; Turner, Matthew J.; Schloss, Jennifer M.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 49
  • DOI: 10.1073/pnas.1601513113

MgO based picotesla field sensors
journal, April 2008

  • Chaves, R. C.; Freitas, P. P.; Ocker, B.
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2839311

Efficient photon detection from color centers in a diamond optical waveguide
journal, March 2012


Sensitivity optimization for NV-diamond magnetometry
journal, March 2020


Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer
journal, April 2016

  • Kim, Young Jin; Savukov, Igor
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24773

High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
journal, March 2018

  • Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun
  • Nature, Vol. 555, Issue 7696
  • DOI: 10.1038/nature25781

Quantum sensing
journal, July 2017


Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond
journal, October 2015

  • Bourgeois, E.; Jarmola, A.; Siyushev, P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9577

A low-noise ferrite magnetic shield
journal, May 2007

  • Kornack, T. W.; Smullin, S. J.; Lee, S. -K.
  • Applied Physics Letters, Vol. 90, Issue 22
  • DOI: 10.1063/1.2737357

High-Sensitivity Magnetometry Based on Quantum Beats in Diamond Nitrogen-Vacancy Centers
journal, March 2013


High magnetic field amplification for improving the sensitivity of Hall sensors
journal, June 2006


Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer
journal, August 2016


Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit
journal, December 2012

  • Shin, Chang S.; Avalos, Claudia E.; Butler, Mark C.
  • Journal of Applied Physics, Vol. 112, Issue 12
  • DOI: 10.1063/1.4771924

Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond
journal, December 2016


Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry
journal, April 2008

  • Lee, S. -K.; Romalis, M. V.
  • Journal of Applied Physics, Vol. 103, Issue 8
  • DOI: 10.1063/1.2885711

Zero-Field Magnetometry Based on Nitrogen-Vacancy Ensembles in Diamond
journal, June 2019


Ferromagnetic concentrator of a magnetic field for the planar HTSC SQUID
journal, August 2002


Real Time Magnetic Field Sensing and Imaging Using a Single Spin in Diamond
journal, January 2011


Low‐Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers
journal, August 2019

  • Strand, Sarah; Lutter, William; Strasburger, Janette F.
  • Journal of the American Heart Association, Vol. 8, Issue 16
  • DOI: 10.1161/JAHA.119.013436

Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond
journal, October 2015

  • Bourgeois, E.; Jarmola, A.; Siyushev, P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9577

Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond
journal, June 2018

  • Clevenson, Hannah; Pham, Linh M.; Teale, Carson
  • Applied Physics Letters, Vol. 112, Issue 25
  • DOI: 10.1063/1.5034216

Efficient Readout of a Single Spin State in Diamond via Spin-to-Charge Conversion
journal, March 2015


Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K
journal, July 2012


Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond
text, January 2019


Miniature cavity-enhanced diamond magnetometer
text, January 2017


Simultaneous Broadband Vector Magnetometry Using Solid-State Spins
text, January 2018


Diamond magnetic microscopy of malarial hemozoin nanocrystals
text, January 2018


Works referencing / citing this record:

Detection of biological signals from a live mammalian muscle using a diamond quantum sensor
text, January 2020


Integrated and portable magnetometer based on nitrogen-vacancy ensembles in diamond
preprint, January 2020


Quantum-assisted Distortion-free audio signal sensing
text, January 2021