DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A permafrost implementation in the simple carbon–climate model Hector v.2.3pf

Abstract

Permafrost currently stores more than a fourth of global soil carbon. A warming climate makes this carbon increasingly vulnerable to decomposition and release into the atmosphere in the form of greenhouse gases. The resulting climate feedback can be estimated using land surface models, but the high complexity and computational cost of these models make it challenging to use them for estimating uncertainty, exploring novel scenarios, and coupling with other models. We have added a representation of permafrost to the simple, open-source global carbon–climate model Hector, calibrated to be consistent with both historical data and 21st century Earth system model projections of permafrost thaw. We include permafrost as a separate land carbon pool that becomes available for decomposition into both methane (CH4) and carbon dioxide (CO2) once thawed; the thaw rate is controlled by region-specific air temperature increases from a preindustrial baseline. We found that by 2100 thawed permafrost carbon emissions increased Hector’s atmospheric CO2 concentration by 5%–7% and the atmospheric CH4 concentration by 7%–12%, depending on the future scenario, resulting in 0.2–0.25°C of additional warming over the 21st century. The fraction of thawed permafrost carbon available for decomposition was the most significant parameter controlling the end-of-century temperature change in themore » model, explaining around 70% of the temperature variance, and was distantly followed by the initial stock of permafrost carbon, which contributed to about 10% of the temperature variance. The addition of permafrost in Hector provides a basis for the exploration of a suite of science questions, as Hector can be cheaply run over a wide range of parameter values to explore uncertainty and can be easily coupled with integrated assessment and other human system models to explore the economic consequences of warming from this feedback.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1811337
Alternate Identifier(s):
OSTI ID: 1821598
Report Number(s):
PNNL-SA-158216
Journal ID: ISSN 1991-9603
Grant/Contract Number:  
AC05-76RL01830; CBET-1931641
Resource Type:
Published Article
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online) Journal Volume: 14 Journal Issue: 7; Journal ID: ISSN 1991-9603
Publisher:
Copernicus GmbH
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; permafrost

Citation Formats

Woodard, Dawn L., Shiklomanov, Alexey N., Kravitz, Ben, Hartin, Corinne, and Bond-Lamberty, Ben. A permafrost implementation in the simple carbon–climate model Hector v.2.3pf. Germany: N. p., 2021. Web. doi:10.5194/gmd-14-4751-2021.
Woodard, Dawn L., Shiklomanov, Alexey N., Kravitz, Ben, Hartin, Corinne, & Bond-Lamberty, Ben. A permafrost implementation in the simple carbon–climate model Hector v.2.3pf. Germany. https://doi.org/10.5194/gmd-14-4751-2021
Woodard, Dawn L., Shiklomanov, Alexey N., Kravitz, Ben, Hartin, Corinne, and Bond-Lamberty, Ben. Fri . "A permafrost implementation in the simple carbon–climate model Hector v.2.3pf". Germany. https://doi.org/10.5194/gmd-14-4751-2021.
@article{osti_1811337,
title = {A permafrost implementation in the simple carbon–climate model Hector v.2.3pf},
author = {Woodard, Dawn L. and Shiklomanov, Alexey N. and Kravitz, Ben and Hartin, Corinne and Bond-Lamberty, Ben},
abstractNote = {Permafrost currently stores more than a fourth of global soil carbon. A warming climate makes this carbon increasingly vulnerable to decomposition and release into the atmosphere in the form of greenhouse gases. The resulting climate feedback can be estimated using land surface models, but the high complexity and computational cost of these models make it challenging to use them for estimating uncertainty, exploring novel scenarios, and coupling with other models. We have added a representation of permafrost to the simple, open-source global carbon–climate model Hector, calibrated to be consistent with both historical data and 21st century Earth system model projections of permafrost thaw. We include permafrost as a separate land carbon pool that becomes available for decomposition into both methane (CH4) and carbon dioxide (CO2) once thawed; the thaw rate is controlled by region-specific air temperature increases from a preindustrial baseline. We found that by 2100 thawed permafrost carbon emissions increased Hector’s atmospheric CO2 concentration by 5%–7% and the atmospheric CH4 concentration by 7%–12%, depending on the future scenario, resulting in 0.2–0.25°C of additional warming over the 21st century. The fraction of thawed permafrost carbon available for decomposition was the most significant parameter controlling the end-of-century temperature change in the model, explaining around 70% of the temperature variance, and was distantly followed by the initial stock of permafrost carbon, which contributed to about 10% of the temperature variance. The addition of permafrost in Hector provides a basis for the exploration of a suite of science questions, as Hector can be cheaply run over a wide range of parameter values to explore uncertainty and can be easily coupled with integrated assessment and other human system models to explore the economic consequences of warming from this feedback.},
doi = {10.5194/gmd-14-4751-2021},
journal = {Geoscientific Model Development (Online)},
number = 7,
volume = 14,
place = {Germany},
year = {Fri Jul 30 00:00:00 EDT 2021},
month = {Fri Jul 30 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/gmd-14-4751-2021

Save / Share:

Works referenced in this record:

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change
journal, January 2020


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
journal, August 2020

  • Hugelius, Gustaf; Loisel, Julie; Chadburn, Sarah
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 34
  • DOI: 10.1073/pnas.1916387117

Economic losses of carbon emissions from circum-Arctic permafrost regions under RCP-SSP scenarios
journal, March 2019


Methane production as key to the greenhouse gas budget of thawing permafrost
journal, March 2018

  • Knoblauch, Christian; Beer, Christian; Liebner, Susanne
  • Nature Climate Change, Vol. 8, Issue 4
  • DOI: 10.1038/s41558-018-0095-z

Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways
journal, May 2019


Effects of long-term climate change on global building energy expenditures
journal, May 2018


Impacts of Observational Constraints Related to Sea Level on Estimates of Climate Sensitivity
journal, June 2019

  • Vega‐Westhoff, Ben; Sriver, Ryan L.; Hartin, Corinne A.
  • Earth's Future, Vol. 7, Issue 6
  • DOI: 10.1029/2018EF001082

Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Methane Feedbacks to the Global Climate System in a Warmer World
journal, March 2018

  • Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas
  • Reviews of Geophysics, Vol. 56, Issue 1
  • DOI: 10.1002/2017RG000559

The next generation of scenarios for climate change research and assessment
journal, February 2010

  • Moss, Richard H.; Edmonds, Jae A.; Hibbard, Kathy A.
  • Nature, Vol. 463, Issue 7282
  • DOI: 10.1038/nature08823

Estimating the Economic Impact of the Permafrost Carbon Feedback
journal, April 2017


Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration
journal, January 2011

  • Meinshausen, M.; Raper, S. C. B.; Wigley, T. M. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1417-2011

Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
journal, January 2016

  • Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
  • Biogeosciences, Vol. 13, Issue 24
  • DOI: 10.5194/bg-13-6669-2016

Effects of permafrost melting on CO 2 and CH 4 exchange of a poorly drained black spruce lowland : PERMAFROST THAW AND C GAS EXCHANGE
journal, June 2006

  • Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G2
  • DOI: 10.1029/2005JG000099

An observation-based constraint on permafrost loss as a function of global warming
journal, April 2017

  • Chadburn, S. E.; Burke, E. J.; Cox, P. M.
  • Nature Climate Change, Vol. 7, Issue 5
  • DOI: 10.1038/nclimate3262

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Soil moisture and hydrology projections of the permafrost region – a model intercomparison
journal, January 2020

  • Andresen, Christian G.; Lawrence, David M.; Wilson, Cathy J.
  • The Cryosphere, Vol. 14, Issue 2
  • DOI: 10.5194/tc-14-445-2020

An improved representation of physical permafrost dynamics in the JULES land-surface model
journal, January 2015

  • Chadburn, S.; Burke, E.; Essery, R.
  • Geoscientific Model Development, Vol. 8, Issue 5
  • DOI: 10.5194/gmd-8-1493-2015

Permafrost is warming at a global scale
journal, January 2019

  • Biskaborn, Boris K.; Smith, Sharon L.; Noetzli, Jeannette
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-018-08240-4

Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
journal, August 2018

  • Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-05738-9

High methane emissions from thermokarst lakes in subarctic peatlands: Methane Emissions from Peatland Thermokarst Lakes
journal, May 2016

  • Matveev, Alex; Laurion, Isabelle; Deshpande, Bethany N.
  • Limnology and Oceanography, Vol. 61, Issue S1
  • DOI: 10.1002/lno.10311

Uncertainties in the global temperature change caused by carbon release from permafrost thawing
journal, January 2012


Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation
journal, August 2016

  • Crichton, K. A.; Bouttes, N.; Roche, D. M.
  • Nature Geoscience, Vol. 9, Issue 9
  • DOI: 10.1038/ngeo2793

Derivation and analysis of a high-resolution estimate of global permafrost zonation
journal, January 2012


Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis
journal, April 2010

  • Romanovsky, Vladimir E.; Smith, Sharon L.; Christiansen, Hanne H.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.689

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients
journal, September 2017

  • Li, Fei; Peng, Yunfeng; Natali, Susan M.
  • Ecology, Vol. 98, Issue 11
  • DOI: 10.1002/ecy.1975

Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach
journal, January 2016


Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities
journal, January 2016

  • Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit
  • Biogeosciences, Vol. 13, Issue 15
  • DOI: 10.5194/bg-13-4329-2016

Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach
journal, July 2013


A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
journal, November 2015

  • Koven, C. D.; Schuur, E. A. G.; Schädel, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2054
  • DOI: 10.1098/rsta.2014.0423

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Economic impacts of carbon dioxide and methane released from thawing permafrost
journal, September 2015


Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Temperature and peat type control CO 2 and CH 4 production in Alaskan permafrost peats
journal, April 2014

  • Treat, C. C.; Wollheim, W. M.; Varner, R. K.
  • Global Change Biology, Vol. 20, Issue 8
  • DOI: 10.1111/gcb.12572

Quantifying uncertainties of permafrost carbon–climate feedbacks
journal, January 2017


The Contribution from Methane to the Permafrost Carbon Feedback
journal, February 2017

  • Nzotungicimpaye, Claude-Michel; Zickfeld, Kirsten
  • Current Climate Change Reports, Vol. 3, Issue 1
  • DOI: 10.1007/s40641-017-0054-1

A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0
journal, January 2015

  • Hartin, C. A.; Patel, P.; Schwarber, A.
  • Geoscientific Model Development, Vol. 8, Issue 4
  • DOI: 10.5194/gmd-8-939-2015

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Lability classification of soil organic matter in the northern permafrost region
journal, January 2020


Boreal peatland C fluxes under varying permafrost regimes
journal, July 2002


Facilitating feedbacks between field measurements and ecosystem models
journal, May 2013

  • LeBauer, David S.; Wang, Dan; Richter, Katherine T.
  • Ecological Monographs, Vol. 83, Issue 2
  • DOI: 10.1890/12-0137.1

Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4
journal, April 2012

  • Lawrence, David M.; Slater, Andrew G.; Swenson, Sean C.
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00334.1

Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems
journal, January 2015


Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
journal, March 2014

  • Yvon-Durocher, Gabriel; Allen, Andrew P.; Bastviken, David
  • Nature, Vol. 507, Issue 7493
  • DOI: 10.1038/nature13164

Patterns of permafrost formation and degradation in relation to climate and ecosystems
journal, January 2007

  • Shur, Y. L.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 18, Issue 1
  • DOI: 10.1002/ppp.582

Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements
journal, April 2019


Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s
journal, February 2014

  • Frost, Gerald V.; Epstein, Howard E.
  • Global Change Biology, Vol. 20, Issue 4
  • DOI: 10.1111/gcb.12406