DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction

Abstract

Magnetic skyrmions, which are topologically distinct magnetic spin textures, are gaining increased attention for their unique physical properties and potential applications in spintronic devices. Here we present a design strategy for skyrmion host candidates based on combinations of magnetic spin, asymmetric building units having stereoactive lone-pair electrons, and polar lattice symmetry. To demonstrate the viability of the proposed rational design principles, we successfully synthesized a Fe(IO3)3 polycrystalline sample and single crystals by using a new simplified low-temperature pathway, which is experimentally feasible for extending materials growth of transition metal iodates. Single crystal X-ray and powder synchrotron X-ray diffraction measurements demonstrated that Fe(IO3)3 crystallizes in the polar chiral hexagonal lattice with space group P63. The combined structural features of the macroscopic electric polarization along the c-axis stemming from the coalignment of the stereoactive lone-pairs of the IO3 trigonal pyramid and the magnetic Fe3+ cation residing on the 3-fold rotation axis were selected to promote asymmetric exchange coupling. We find evidence of a predicted skyrmion phase at 14 K ≤ T ≤ 16 K and 2.5 T ≤ μ0H ≤ 3.2 T driven by a Dzyaloshinskii–Moriya (DM) interaction, a conclusion supported by the appreciable DM exchange and the zero-field spiral antiferromagnetic groundmore » state of Fe(IO3)3 deduced from neutron diffraction experiments. The associated magnetic modulation wavelength of the putative skyrmions is expected to be short ~18 nm, comparable to the period of the DM-driven incommensurate order. This work links stereoactive lone-pair electron effects to enhanced DM interaction, demonstrating a new approach for chemical guidelines in the search for skyrmionic states of matter.« less

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [4]; ORCiD logo [1]
  1. Clemson Univ., SC (United States)
  2. Gdansk University of Technology (Poland)
  3. Pedagogical University of Cracow (Poland)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1807268
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 12; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Crystal structure; Magnetic properties; Quantum mechanics; Phase transitions; Materials

Citation Formats

Oyeka, Ebube E., Winiarski, Michał J., Błachowski, Artur, Taddei, Keith M., Scheie, Allen, and Tran, Thao T. Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction. United States: N. p., 2021. Web. doi:10.1021/acs.chemmater.1c01163.
Oyeka, Ebube E., Winiarski, Michał J., Błachowski, Artur, Taddei, Keith M., Scheie, Allen, & Tran, Thao T. Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction. United States. https://doi.org/10.1021/acs.chemmater.1c01163
Oyeka, Ebube E., Winiarski, Michał J., Błachowski, Artur, Taddei, Keith M., Scheie, Allen, and Tran, Thao T. Thu . "Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction". United States. https://doi.org/10.1021/acs.chemmater.1c01163. https://www.osti.gov/servlets/purl/1807268.
@article{osti_1807268,
title = {Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction},
author = {Oyeka, Ebube E. and Winiarski, Michał J. and Błachowski, Artur and Taddei, Keith M. and Scheie, Allen and Tran, Thao T.},
abstractNote = {Magnetic skyrmions, which are topologically distinct magnetic spin textures, are gaining increased attention for their unique physical properties and potential applications in spintronic devices. Here we present a design strategy for skyrmion host candidates based on combinations of magnetic spin, asymmetric building units having stereoactive lone-pair electrons, and polar lattice symmetry. To demonstrate the viability of the proposed rational design principles, we successfully synthesized a Fe(IO3)3 polycrystalline sample and single crystals by using a new simplified low-temperature pathway, which is experimentally feasible for extending materials growth of transition metal iodates. Single crystal X-ray and powder synchrotron X-ray diffraction measurements demonstrated that Fe(IO3)3 crystallizes in the polar chiral hexagonal lattice with space group P63. The combined structural features of the macroscopic electric polarization along the c-axis stemming from the coalignment of the stereoactive lone-pairs of the IO3– trigonal pyramid and the magnetic Fe3+ cation residing on the 3-fold rotation axis were selected to promote asymmetric exchange coupling. We find evidence of a predicted skyrmion phase at 14 K ≤ T ≤ 16 K and 2.5 T ≤ μ0H ≤ 3.2 T driven by a Dzyaloshinskii–Moriya (DM) interaction, a conclusion supported by the appreciable DM exchange and the zero-field spiral antiferromagnetic ground state of Fe(IO3)3 deduced from neutron diffraction experiments. The associated magnetic modulation wavelength of the putative skyrmions is expected to be short ~18 nm, comparable to the period of the DM-driven incommensurate order. This work links stereoactive lone-pair electron effects to enhanced DM interaction, demonstrating a new approach for chemical guidelines in the search for skyrmionic states of matter.},
doi = {10.1021/acs.chemmater.1c01163},
journal = {Chemistry of Materials},
number = 12,
volume = 33,
place = {United States},
year = {Thu Jun 03 00:00:00 EDT 2021},
month = {Thu Jun 03 00:00:00 EDT 2021}
}

Works referenced in this record:

Magnetic skyrmions in nanostructures of non-centrosymmetric materials
journal, December 2019

  • Mathur, Nitish; Stolt, Matthew J.; Jin, Song
  • APL Materials, Vol. 7, Issue 12
  • DOI: 10.1063/1.5130423

Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility
journal, June 2012


Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

High-field depinned phase and planar Hall effect in the skyrmion host Gd 2 PdSi 3
journal, June 2020


Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


Metamagnetic transitions and magnetoelectric responses in the chiral polar helimagnet Ni 2 InSb O 6
journal, August 2020


VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Isolated zero field sub-10 nm skyrmions in ultrathin Co films
journal, August 2019


Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow
journal, July 2019


57Fe Mössbauer spectroscopic study and magnetic properties of 1D Fe(IO3)3 particles and their thermal decomposition to α-Fe2O3
journal, September 2018


Crystal Structure, Magnetism, and Electronic Properties of a Rare-Earth-Free Ferromagnet: MnPt 5 As
journal, April 2020


Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets
journal, March 2019


Zur Kistallstruktur von FeJ3O9
journal, February 1976


Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
journal, December 2010

  • Yu, X. Z.; Kanazawa, N.; Onose, Y.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2916

Multiferroicity and skyrmions carrying electric polarization in GaV 4 S 8
journal, November 2015

  • Ruff, Eugen; Widmann, Sebastian; Lunkenheimer, Peter
  • Science Advances, Vol. 1, Issue 10
  • DOI: 10.1126/sciadv.1500916

Skyrmion phase and competing magnetic orders on a breathing kagomé lattice
journal, December 2019


Pseudopotentials periodic table: From H to Pu
journal, December 2014


BiO(IO 3 ): A New Polar Iodate that Exhibits an Aurivillius-Type (Bi 2 O 2 ) 2+ Layer and a Large SHG Response
journal, August 2011

  • Nguyen, Sau Doan; Yeon, Jeongho; Kim, Sang-Hwan
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja205456b

Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography
journal, April 2014

  • Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.52

Néel-Type Skyrmion Lattice in the Tetragonal Polar Magnet VOSe 2 O 5
journal, December 2017


Controlling Dzyaloshinskii-Moriya interactions in the skyrmion host candidates FePd 1 x Pt x Mo 3 N
journal, February 2020


Observation of Magnetic Excitations of Skyrmion Crystal in a Helimagnetic Insulator Cu 2 OSeO 3
journal, July 2012


Noncentrosymmetric Magnets Hosting Magnetic Skyrmions
journal, March 2017

  • Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori
  • Advanced Materials, Vol. 29, Issue 25
  • DOI: 10.1002/adma.201603227

Rational Design of the Nonlinear Optical Response in a Tin Iodate Fluoride Sn(IO 3 ) 2 F 2
journal, March 2020


Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet
journal, January 2020


Thermodynamic evidence of a second skyrmion lattice phase and tilted conical phase in Cu 2 OSeO 3
journal, October 2018


Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures
journal, February 2019


Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8
journal, September 2015

  • Kézsmárki, I.; Bordács, S.; Milde, P.
  • Nature Materials, Vol. 14, Issue 11
  • DOI: 10.1038/nmat4402

Magnetic Skyrmion Materials
journal, November 2020


A new class of chiral materials hosting magnetic skyrmions beyond room temperature
journal, July 2015

  • Tokunaga, Y.; Yu, X. Z.; White, J. S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8638

Large Topological Hall Effect in a Short-Period Helimagnet MnGe
journal, April 2011


A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory
journal, September 2018

  • Calder, S.; An, K.; Boehler, R.
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5033906

Structural evolution and skyrmionic phase diagram of the lacunar spinel GaMo 4 Se 8
journal, June 2020


Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Principles of Condensed Matter Physics
book, January 1995


Propagation dynamics of spin excitations along skyrmion strings
journal, January 2020


Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys
journal, May 2019


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


New Series of Polar and Nonpolar Platinum Iodates A 2 Pt(IO 3 ) 6 (A = H 3 O, Na, K, Rb, Cs)
journal, February 2016


Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet
journal, September 2016

  • Karube, K.; White, J. S.; Reynolds, N.
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4752

(Cs X )Cu 5 O 2 (PO 4 ) 2 ( X = Cl, Br, I): A Family of Cu 2+ S = 1 / 2 Compounds with Capped-Kagomé Networks Composed of OCu 4 Units
journal, March 2019


Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4
journal, October 2016

  • Gao, Shang; Zaharko, Oksana; Tsurkan, Vladimir
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys3914

Observation of Skyrmions in a Multiferroic Material
journal, April 2012


Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Real-space imaging of confined magnetic skyrmion tubes
journal, April 2020


Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
journal, January 2020


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


The role of temperature and drive current in skyrmion dynamics
journal, January 2020


Antiferromagnetic order and evolution of magnetic entropy in RE4Zn5Ge6 (RE=Y, Gd–Lu)
journal, April 2006

  • Fritsch, V.; Moreno, N. O.; Thompson, J. D.
  • Journal of Magnetism and Magnetic Materials, Vol. 299, Issue 1
  • DOI: 10.1016/j.jmmm.2005.03.087

Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu 2 OSeO 3
journal, June 2012


Dynamics of Ternary Cu–Fe–S 2 Nanoparticles Stabilized by Organic Ligands
journal, March 2017

  • Żukrowski, J.; Błachowski, A.; Komędera, K.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 12
  • DOI: 10.1021/acs.jpcc.6b12098

Chemical Pressure Stabilization of the Cubic B20 Structure in Skyrmion Hosting Fe 1– x Co x Ge Alloys
journal, January 2018