skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 17, 2021

Title: Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications

Abstract

Solar thermochemical (STC) processes hold promise as efficient ways to generate renewable fuels, fuel precursors, or chemical feedstocks using concentrated sunlight. Specifically, one actively researched approach is the two-step STC cycle, which uses a redox-active, off-stoichiometric, transition-metal oxide material to split water and/or CO2, generating H2 and/or CO, respectively, or syngas (a combination of H2 and CO). Identifying novel metal oxides that yield larger reduction extents (practically achievable off-stoichiometries) than the state-of-the-art CeO2 is critical. Here, we explore the chemical space of Ca–Ce–M–O (M = 3d transition metal, except Cu and Zn) metal oxide perovskites, with Ca and/or Ce occupying the A site and M occupying the B site within an ABO3 framework, as potential STC candidates. We use density functional theory (DFT)-based calculations and systematically evaluate the oxygen vacancy (VaO) formation energy (≈ enthalpy of reduction in an STC cycle), electronic properties, thermodynamic stability of CaMO3, CeMO3, and Ca0.5Ce0.5MO3 perovskites, and the VaO formation energy within Ca0.5Ce0.5Ti0.5Mg0.5O3 perovskite. We consider only Ca and/or Ce on the A site because of their similar size and the potential redox activity of Ce4+. If both Ce and M exhibit simultaneous reduction with VaO formation, the resulting perovskite could exhibit a larger entropymore » of reduction than a single cation reduction. The increased entropy produces increased reduction for fixed temperature, partial pressure of oxygen, and reduction enthalpy, and therefore increased STC efficiency. Importantly, we identify Ca0.5Ce0.5MnO3, Ca0.5Ce0.5FeO3, and Ca0.5Ce0.5VO3 to be promising candidates based on their VaO formation energy and thermodynamic (meta)stability. Moreover, based on our calculated on-site magnetic moments, electron density of states, and electron density differences between pristine and defective structures, we find Ca0.5Ce0.5MnO3 to exhibit simultaneous reduction of both Ce4+ (A-site) and Mn3+ (B-site), highlighting a particularly promising candidate for STC applications with a predicted higher entropy of reduction than CeO2. Lastly, we extract metrics that govern the trends in VaO formation energies, such as standard reduction potentials, and provide pointers for further experimental and theoretical studies, which will enable the design of improved materials for the STC cycle.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Princeton Univ., NJ (United States); Indian Inst. of Science, Karnataka (India)
  2. Arizona State Univ., Tempe, AZ (United States)
  3. Princeton Univ., NJ (United States); Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1806574
Grant/Contract Number:  
EE0008090
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 23; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 30 DIRECT ENERGY CONVERSION; 36 MATERIALS SCIENCE; Redox reactions; solar thermochemical; water splitting; density functional theory; perovskites; oxygen; chemical structure; cations

Citation Formats

Gautam, Gopalakrishnan Sai, Stechel, Ellen B., and Carter, Emily A.. Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications. United States: N. p., 2020. Web. https://doi.org/10.1021/acs.chemmater.0c02912.
Gautam, Gopalakrishnan Sai, Stechel, Ellen B., & Carter, Emily A.. Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications. United States. https://doi.org/10.1021/acs.chemmater.0c02912
Gautam, Gopalakrishnan Sai, Stechel, Ellen B., and Carter, Emily A.. Tue . "Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications". United States. https://doi.org/10.1021/acs.chemmater.0c02912.
@article{osti_1806574,
title = {Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications},
author = {Gautam, Gopalakrishnan Sai and Stechel, Ellen B. and Carter, Emily A.},
abstractNote = {Solar thermochemical (STC) processes hold promise as efficient ways to generate renewable fuels, fuel precursors, or chemical feedstocks using concentrated sunlight. Specifically, one actively researched approach is the two-step STC cycle, which uses a redox-active, off-stoichiometric, transition-metal oxide material to split water and/or CO2, generating H2 and/or CO, respectively, or syngas (a combination of H2 and CO). Identifying novel metal oxides that yield larger reduction extents (practically achievable off-stoichiometries) than the state-of-the-art CeO2 is critical. Here, we explore the chemical space of Ca–Ce–M–O (M = 3d transition metal, except Cu and Zn) metal oxide perovskites, with Ca and/or Ce occupying the A site and M occupying the B site within an ABO3 framework, as potential STC candidates. We use density functional theory (DFT)-based calculations and systematically evaluate the oxygen vacancy (VaO) formation energy (≈ enthalpy of reduction in an STC cycle), electronic properties, thermodynamic stability of CaMO3, CeMO3, and Ca0.5Ce0.5MO3 perovskites, and the VaO formation energy within Ca0.5Ce0.5Ti0.5Mg0.5O3 perovskite. We consider only Ca and/or Ce on the A site because of their similar size and the potential redox activity of Ce4+. If both Ce and M exhibit simultaneous reduction with VaO formation, the resulting perovskite could exhibit a larger entropy of reduction than a single cation reduction. The increased entropy produces increased reduction for fixed temperature, partial pressure of oxygen, and reduction enthalpy, and therefore increased STC efficiency. Importantly, we identify Ca0.5Ce0.5MnO3, Ca0.5Ce0.5FeO3, and Ca0.5Ce0.5VO3 to be promising candidates based on their VaO formation energy and thermodynamic (meta)stability. Moreover, based on our calculated on-site magnetic moments, electron density of states, and electron density differences between pristine and defective structures, we find Ca0.5Ce0.5MnO3 to exhibit simultaneous reduction of both Ce4+ (A-site) and Mn3+ (B-site), highlighting a particularly promising candidate for STC applications with a predicted higher entropy of reduction than CeO2. Lastly, we extract metrics that govern the trends in VaO formation energies, such as standard reduction potentials, and provide pointers for further experimental and theoretical studies, which will enable the design of improved materials for the STC cycle.},
doi = {10.1021/acs.chemmater.0c02912},
journal = {Chemistry of Materials},
number = 23,
volume = 32,
place = {United States},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 17, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Solar thermochemical production of hydrogen––a review
journal, May 2005


Solar thermochemical splitting of water to generate hydrogen
journal, May 2017

  • Rao, C. N. R.; Dey, Sunita
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 51
  • DOI: 10.1073/pnas.1700104114

Design Aspects Of Solar Thermochemical Engineering—A Case Study: Two-Step Water-Splitting Cycle Using The Fe3O4/FeO Redox System
journal, January 1999


Advances and trends in redox materials for solar thermochemical fuel production
journal, November 2017


Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles
journal, February 2013

  • Siegel, Nathan P.; Miller, James E.; Ermanoski, Ivan
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 9, p. 3276-3286
  • DOI: 10.1021/ie400193q

Fuel production from CO2 using solar-thermal energy: system level analysis
journal, January 2012

  • Kim, Jiyong; Johnson, Terry A.; Miller, James E.
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee21798h

Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides
journal, October 2016


(Invited) HydroGEN: An AWSM Energy Materials Network
journal, April 2018

  • Vickers, James W.; Dinh, Huyen N.; Randolph, Katie
  • ECS Transactions, Vol. 85, Issue 11
  • DOI: 10.1149/08511.0003ecst

Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
journal, October 2013

  • Miller, James E.; McDaniel, Anthony H.; Allendorf, Mark D.
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300469
  • DOI: 10.1002/aenm.201300469

Thermodynamic development and design of a concentrating solar thermochemical water-splitting process for co-production of hydrogen and electricity
journal, September 2018

  • Budama, Vishnu Kumar; Johnson, Nathan G.; McDaniel, Anthony
  • International Journal of Hydrogen Energy, Vol. 43, Issue 37
  • DOI: 10.1016/j.ijhydene.2018.07.151

Towards Solar Fuels from Water and CO 2
journal, February 2010


Applications and limitations of two step metal oxide thermochemical redox cycles; a review
journal, January 2017

  • Bulfin, B.; Vieten, J.; Agrafiotis, C.
  • Journal of Materials Chemistry A, Vol. 5, Issue 36
  • DOI: 10.1039/C7TA05025A

Ceria–Zirconia Solid Solutions (Ce 1– x Zr x O 2−δ , x ≤ 0.2) for Solar Thermochemical Water Splitting: A Thermodynamic Study
journal, October 2014

  • Hao, Yong; Yang, Chih-Kai; Haile, Sossina M.
  • Chemistry of Materials, Vol. 26, Issue 20
  • DOI: 10.1021/cm503131p

Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H 2 O and CO 2
journal, August 2009


Giant onsite electronic entropy enhances the performance of ceria for water splitting
journal, August 2017


New Insights into the Dynamics That Control the Activity of Ceria–Zirconia Solid Solutions in Thermochemical Water Splitting Cycles
journal, August 2017

  • Pappacena, Alfonsina; Rancan, Marzio; Armelao, Lidia
  • The Journal of Physical Chemistry C, Vol. 121, Issue 33
  • DOI: 10.1021/acs.jpcc.7b06043

Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials
journal, January 2011

  • Pavone, Michele; Ritzmann, Andrew M.; Carter, Emily A.
  • Energy & Environmental Science, Vol. 4, Issue 12
  • DOI: 10.1039/c1ee02377b

Oxygen Transport in Perovskite-Type Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics
journal, June 2014

  • Muñoz-García, Ana B.; Ritzmann, Andrew M.; Pavone, Michele
  • Accounts of Chemical Research, Vol. 47, Issue 11
  • DOI: 10.1021/ar4003174

Piezoelectric and ferroelectric materials and structures for energy harvesting applications
journal, January 2014

  • Bowen, C. R.; Kim, H. A.; Weaver, P. M.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42454E

Perovskite manganites and layered cobaltites: potential materials for thermoelectric applications
journal, September 2002


Perovskite oxides for application in thermochemical air separation and oxygen storage
journal, January 2016

  • Vieten, J.; Bulfin, B.; Call, F.
  • Journal of Materials Chemistry A, Vol. 4, Issue 35
  • DOI: 10.1039/C6TA04867F

Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H 2 O and CO 2
journal, March 2013

  • Scheffe, Jonathan R.; Weibel, David; Steinfeld, Aldo
  • Energy & Fuels, Vol. 27, Issue 8
  • DOI: 10.1021/ef301923h

Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production
journal, January 2013

  • McDaniel, Anthony H.; Miller, Elizabeth C.; Arifin, Darwin
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41372a

BaCe 0.25 Mn 0.75 O 3−δ —a promising perovskite-type oxide for solar thermochemical hydrogen production
journal, January 2018

  • R. Barcellos, Debora; Sanders, Michael D.; Tong, Jianhua
  • Energy & Environmental Science, Vol. 11, Issue 11
  • DOI: 10.1039/C8EE01989D

Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting
journal, January 2014

  • Yang, Chih-Kai; Yamazaki, Yoshihiro; Aydin, Aykut
  • J. Mater. Chem. A, Vol. 2, Issue 33
  • DOI: 10.1039/C4TA02694B

Tunable Oxygen Vacancy Formation Energetics in the Complex Perovskite Oxide Sr x La 1– x Mn y Al 1– y O 3
journal, November 2014

  • Deml, Ann M.; Stevanović, Vladan; Holder, Aaron M.
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm5033755

High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications
journal, July 2016


Phase Identification of the Layered Perovskite Ce x Sr 2– x MnO 4 and Application for Solar Thermochemical Water Splitting
journal, May 2019


Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production
journal, January 2014


High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites
journal, October 2017


Materials design of perovskite solid solutions for thermochemical applications
journal, January 2019

  • Vieten, Josua; Bulfin, Brendan; Huck, Patrick
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/C9EE00085B

First-principles thermodynamic framework for the evaluation of thermochemical H 2 O - or CO 2 -splitting materials
journal, December 2009


Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles
journal, February 2018

  • Lany, Stephan
  • The Journal of Chemical Physics, Vol. 148, Issue 7
  • DOI: 10.1063/1.5022176

Thermodynamic modelling of the cerium–oxygen system
journal, April 2006

  • Zinkevich, M.; Djurovic, D.; Aldinger, F.
  • Solid State Ionics, Vol. 177, Issue 11-12, p. 989-1001
  • DOI: 10.1016/j.ssi.2006.02.044

Quantum Origin of the Oxygen Storage Capability of Ceria
journal, September 2002


Ab initio thermodynamics of intrinsic oxygen vacancies in ceria
journal, October 2012


CeTi 2 O 6 —A Promising Oxide for Solar Thermochemical Hydrogen Production
journal, April 2020

  • Naghavi, S. Shahab; He, Jiangang; Wolverton, C.
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 19
  • DOI: 10.1021/acsami.0c01083

The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting
journal, January 2018

  • Zhai, Shang; Rojas, Jimmy; Ahlborg, Nadia
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE00050F

Inhomogeneous Electron Gas
journal, November 1964


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


First-principles calculations for point defects in solids
journal, March 2014

  • Freysoldt, Christoph; Grabowski, Blazej; Hickel, Tilmann
  • Reviews of Modern Physics, Vol. 86, Issue 1
  • DOI: 10.1103/RevModPhys.86.253

Role of Point Defects in Spinel Mg Chalcogenide Conductors
journal, November 2017


Understanding the Effects of Cd and Ag Doping in Cu 2 ZnSnS 4 Solar Cells
journal, June 2018


A First‐Principles‐Based Sub‐Lattice Formalism for Predicting Off‐Stoichiometry in Materials for Solar Thermochemical Applications: The Example of Ceria
journal, August 2020

  • Sai Gautam, Gopalakrishnan; Stechel, Ellen B.; Carter, Emily A.
  • Advanced Theory and Simulations, Vol. 3, Issue 9
  • DOI: 10.1002/adts.202000112

A Model to Understand the Oxygen Vacancy Formation in Zr-Doped CeO 2 : Electrostatic Interaction and Structural Relaxation
journal, May 2009

  • Wang, Hai-Feng; Gong, Xue-Qing; Guo, Yang-Long
  • The Journal of Physical Chemistry C, Vol. 113, Issue 23
  • DOI: 10.1021/jp900942a

Die Gesetze der Krystallochemie
journal, May 1926


New tolerance factor to predict the stability of perovskite oxides and halides
journal, February 2019

  • Bartel, Christopher J.; Sutton, Christopher; Goldsmith, Bryan R.
  • Science Advances, Vol. 5, Issue 2
  • DOI: 10.1126/sciadv.aav0693

Evaluating optimal U for 3 d transition-metal oxides within the SCAN+ U framework
journal, April 2020


Effective ionic radii in oxides and fluorides
journal, May 1969

  • Shannon, R. D.; Prewitt, C. T.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 25, Issue 5
  • DOI: 10.1107/S0567740869003220

Charge ordering and magnetoresistance of Ca 1 x Ce x MnO 3
journal, May 2001


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Evaluating transition metal oxides within DFT-SCAN and SCAN + U frameworks for solar thermochemical applications
journal, September 2018


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Strongly Constrained and Appropriately Normed Semilocal Density Functional
journal, July 2015


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites
journal, November 2014

  • Curnan, Matthew T.; Kitchin, John R.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 49
  • DOI: 10.1021/jp507957n

The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Atomic Radii in Crystals
journal, November 1964

  • Slater, J. C.
  • The Journal of Chemical Physics, Vol. 41, Issue 10
  • DOI: 10.1063/1.1725697

Predicting the volumes of crystals
journal, April 2018


Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure
journal, July 2017


Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides
journal, May 2015

  • Deml, Ann M.; Holder, Aaron M.; O’Hayre, Ryan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 10
  • DOI: 10.1021/acs.jpclett.5b00710

Metastable structures in metallurgy
journal, June 1981


Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials
journal, July 1995


Thermodynamic limit for synthesis of metastable inorganic materials
journal, April 2018

  • Aykol, Muratahan; Dwaraknath, Shyam S.; Sun, Wenhao
  • Science Advances, Vol. 4, Issue 4
  • DOI: 10.1126/sciadv.aaq0148

The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

A map of the inorganic ternary metal nitrides
journal, June 2019


First-principles evaluation of multi-valent cation insertion into orthorhombic V 2 O 5
journal, January 2015

  • Gautam, Gopalakrishnan Sai; Canepa, Pieremanuele; Malik, Rahul
  • Chemical Communications, Vol. 51, Issue 71
  • DOI: 10.1039/C5CC04947D

Facile syntheses of cerium-based CeMO3 (M = Co, Ni, Cu) perovskite nanomaterials for high-performance supercapacitor electrodes
journal, January 2020


Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La 1-x Sr x FeO 3-δ ( x = 0, 0.25, 0.50)
journal, July 2013

  • Ritzmann, Andrew M.; Muñoz-García, Ana B.; Pavone, Michele
  • Chemistry of Materials, Vol. 25, Issue 15
  • DOI: 10.1021/cm401052w

Assessment of the La–Sr–Mn–O system
journal, June 2004


Catalytic Properties of Perovskite-Type Mixed Oxides (ABO 3 ) Consisting of Rare Earth and 3d Transition Metals. The Roles of the A- and B-Site Ions
journal, March 1988

  • Nitadori, Taihei; Ichiki, Tatsumi; Misono, Makoto
  • Bulletin of the Chemical Society of Japan, Vol. 61, Issue 3
  • DOI: 10.1246/bcsj.61.621

Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling
journal, January 2013

  • Muñoz-García, Ana B.; Pavone, Michele; Ritzmann, Andrew M.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 17
  • DOI: 10.1039/c3cp50995h

Thermal transport in electron-doped manganites
journal, March 2007

  • Matsukawa, M.; Tamura, A.; Yamato, Y.
  • Journal of Magnetism and Magnetic Materials, Vol. 310, Issue 2
  • DOI: 10.1016/j.jmmm.2006.10.410

Unavoidable disorder and entropy in multi-component systems
journal, July 2019


Modeling of Ce O 2 , Ce 2 O 3 , and Ce O 2 x in the LDA + U formalism
journal, January 2007


Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO 2 -Based Photocatalysts
journal, March 2008

  • Nowotny, M. K.; Sheppard, L. R.; Bak, T.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 14
  • DOI: 10.1021/jp077275m

Defect Structure and Electrical Properties of Nonstoichiometric CeO[sub 2] Single Crystals
journal, January 1979

  • Tuller, H. L.
  • Journal of The Electrochemical Society, Vol. 126, Issue 2
  • DOI: 10.1149/1.2129007

Defect and transport properties of nanocrystalline CeO 2− x
journal, July 1996

  • Chiang, Y. ‐M.; Lavik, E. B.; Kosacki, I.
  • Applied Physics Letters, Vol. 69, Issue 2
  • DOI: 10.1063/1.117366

The Volatilization of Chromium Oxide
journal, January 1961

  • Caplan, D.; Cohen, M.
  • Journal of The Electrochemical Society, Vol. 108, Issue 5
  • DOI: 10.1149/1.2428106

Investigating the Energetic Ordering of Stable and Metastable TiO 2 Polymorphs Using DFT+ U and Hybrid Functionals
journal, August 2015

  • Curnan, Matthew T.; Kitchin, John R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 36
  • DOI: 10.1021/acs.jpcc.5b05338

Cluster expansions and the configurational energy of alloys
journal, November 1993


Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics
journal, January 2014

  • Deml, Ann M.; Stevanović, Vladan; Muhich, Christopher L.
  • Energy & Environmental Science, Vol. 7, Issue 6
  • DOI: 10.1039/c3ee43874k

Principles of doping ceria for the solar thermochemical redox splitting of H 2 O and CO 2
journal, January 2017

  • Muhich, Christopher; Steinfeld, Aldo
  • Journal of Materials Chemistry A, Vol. 5, Issue 30
  • DOI: 10.1039/C7TA04000H

Predicting the solar thermochemical water splitting ability and reaction mechanism of metal oxides: a case study of the hercynite family of water splitting cycles
journal, January 2015

  • Muhich, Christopher L.; Ehrhart, Brian D.; Witte, Vanessa A.
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE01979F

Predictions of new AB O 3 perovskite compounds by combining machine learning and density functional theory
journal, April 2018


Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry
journal, October 2018

  • Bartel, Christopher J.; Millican, Samantha L.; Deml, Ann M.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06682-4